1102 User Guide: Difference between revisions

From Phidgets Support
No edit summary
No edit summary
Line 1: Line 1:
[[Category:UserGuide]]
[[Category:UserGuide]]
__NOTOC__
 
[[Image:1102_Functional.jpeg|300px|right|link=]]
===Required Hardware===
===Required Hardware===


Line 11: Line 10:


===Connecting the Pieces===
===Connecting the Pieces===
 
[[Image:1102_Functional.jpeg|300px|right|link=]]
# Connect the IR sensor to the InterfaceKit or Hub with the sensor cable.
# Connect the IR sensor to the InterfaceKit or Hub with the sensor cable.
# Connect the InterfaceKit or Hub to your computer with the USB cable.
# Connect the InterfaceKit or Hub to your computer with the USB cable.

Revision as of 21:06, 29 August 2016


Required Hardware

  • A 1102 IR Reflective Sensor
  • An InterfaceKit or Hub to read the sensor
  • A sensor cable
  • A USB cable
  • A computer

Connecting the Pieces

  1. Connect the IR sensor to the InterfaceKit or Hub with the sensor cable.
  2. Connect the InterfaceKit or Hub to your computer with the USB cable.


Testing Using Windows

Phidget Control Panel

In order to demonstrate the functionality of the 1018, the Phidget Control Panel running on a Windows machine will be used.


The Phidget Control Panel is available for use on both macOS and Windows machines.

Windows

To open the Phidget Control Panel on Windows, find the Ph.jpg icon in the taskbar. If it is not there, open up the start menu and search for Phidget Control Panel

Windows PhidgetTaskbar.PNG

macOS

To open the Phidget Control Panel on macOS, open Finder and navigate to the Phidget Control Panel in the Applications list. Double click on the Ph.jpg icon to bring up the Phidget Control Panel.


For more information, take a look at the getting started guide for your operating system:


Linux users can follow the getting started with Linux guide and continue reading here for more information about the 1018.

First Look

After plugging the 1018 into your computer and opening the Phidget Control Panel, you will see something like this:

1018 Panel.jpg


The Phidget Control Panel will list all connected Phidgets and associated objects, as well as the following information:

  • Serial number: allows you to differentiate between similar Phidgets.
  • Channel: allows you to differentiate between similar objects on a Phidget.
  • Version number: corresponds to the firmware version your Phidget is running. If your Phidget is listed in red, your firmware is out of date. Update the firmware by double-clicking the entry.


The Phidget Control Panel can also be used to test your device. Double-clicking on an object will open an example.

Voltage Input

Double-click on a Voltage Input object in order to run the example: [[Image:{{{1}}}_VoltageInputSensor_Example.jpg|center|link=]]


General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:

  • Modify the change trigger and/or data interval value by dragging the sliders. For more information on these settings, see the data interval/change trigger page.
  • If you have an analog sensor connected that you bought from us, you can select it from the Sensor Type drop-down menu. The example will then convert the voltage into a more meaningful value based on your sensor, with units included, and display it beside the Sensor Value label. Converting voltage to a Sensor Value is not specific to this example, it is handled by the Phidget libraries, with functions you have access to when you begin developing!


For more information about Voltage Inputs, check out the Voltage Input Primer.

Testing Using Mac OS X

  1. Go to the Quick Downloads section on the Mac OS X page.
  2. Download and run the Phidget OS X Installer
  3. Click on System Preferences >> Phidgets (under Other) to activate the Preference Pane
  4. Make sure your device is properly attached
  5. Double click on your device's objects in the listing to open them. The Preference Pane and examples will function very similarly to the ones described above in the Windows section.

Testing Using Linux

For a general step-by-step guide on getting Phidgets running on Linux, see the Linux page.

Using a Remote OS

We recommend testing your Phidget on a desktop OS before moving on to remote OS. Once you've tested your Phidget, you can go to the PhidgetSBC, or iOS pages to learn how to proceed.

Technical Details

The Infrared sensor can detect an object at 5mm. It measures the amount of energy from the object and returns a value between 0 and 1000. A returned value between 0 and 400 signifies that the object has been detected. Values over 400 indicate that there is no reflective object within range, or that an object is too close.

The 1102 sensor consists of an infrared emitting diode and an NPN silicon phototransistor mounted side by side on a converging optical axis in a black plastic housing. The phototransistor responds to radiation from the emitting diode only when a reflective object passes within its field of view. The area of the optimum response approximates a circle 5mm in diameter.

The amount of reflectivity is measured by Infrared and some materials that look very reflective to the human eye might not be as reflective in the infrared spectrum. The sensor can only detect objects that are between 3 to 7 mm away; it cannot see any objects outside that range.

The 1102 is not a digital sensor. The returned value is inversely proportional to the amount of reflectivity of the object (0 being more reflective, and 400 being less reflective), but in practice the variation between sensors is broad enough that the 1102 should not be used to measure the reflectivity of an object - only to detect if the object exists. You may have trouble using this sensor through a pane of glass, since the IR light can easily reflect off of the surface of the glass.

When working with sensors that are not digital, it is helpful to filter out noise by implementing a simple hysteresis in your code. By interpreting any SensorValue < 400 as a detection, and not releasing the detection until SensorValue goes above some higher threshold, such as 500, multiple triggering can often be avoided.

Finally, the 1102 works best in a constrained environment, where objects can be mechanically guaranteed to be within the 3-7mm range, or not present at all.

Template:UGotherint

Phidget Cable

Analoginput.jpg

The Phidget Cable is a 3-pin, 0.100 inch pitch locking connector. Pictured here is a plug with the connections labelled. The connectors are commonly available - refer to the Analog Input Primer for manufacturer part numbers.

What to do Next

  • Programming Languages - Find your preferred programming language here and learn how to write your own code with Phidgets!
  • Phidget Programming Basics - Once you have set up Phidgets to work with your programming environment, we recommend you read our page on to learn the fundamentals of programming with Phidgets.


Product History

Template:UGhist Template:UGrow |- |style="background: #fff0f0" align=center| October 2014||style="background: #fff0f0" align=left colspan=3| Product Discontinued.