DAQ1000 User Guide: Difference between revisions

From Phidgets Support
No edit summary
Line 29: Line 29:
{{ugVoltageRatioSensor|DAQ1000}}
{{ugVoltageRatioSensor|DAQ1000}}


{{UGotheros}}
{{ugAddressingInformation}}
 
===Using Your Own Program===
 
You are now ready to start writing your own code for the device. The best way to do that is to start from our examples:
 
This Phidget is compatible with the {{ExampleLink|VoltageInput}} and the {{ExampleLink|VoltageRatioInput}}.
 
Once you have your example, you will need to follow the instructions on the page for your programming language to get it running. To find these instructions, select your programming language from the [[Software_Overview#Language_Support|Software Overview]] page.


==Technical Details==
==Technical Details==

Revision as of 16:28, 27 August 2018


DAQ1000 Functional.jpeg

Required Hardware

Connecting the Pieces

  1. Connect the DAQ1000 to the VINT Hub using the Phidget cable.
  2. Connect the VINT Hub to your computer with a USB cable.
  3. Connect a Phidgets sensor or other 5V device to one of the DAQ1000's inputs.


Testing Using Windows

Phidget Control Panel

In order to demonstrate the functionality of the DAQ1000, the Phidget Control Panel running on a Windows machine will be used.


The Phidget Control Panel is available for use on both macOS and Windows machines.

Windows

To open the Phidget Control Panel on Windows, find the Ph.jpg icon in the taskbar. If it is not there, open up the start menu and search for Phidget Control Panel

Windows PhidgetTaskbar.PNG

macOS

To open the Phidget Control Panel on macOS, open Finder and navigate to the Phidget Control Panel in the Applications list. Double click on the Ph.jpg icon to bring up the Phidget Control Panel.


For more information, take a look at the getting started guide for your operating system:


Linux users can follow the getting started with Linux guide and continue reading here for more information about the DAQ1000.

First Look

After plugging the DAQ1000 into your computer and opening the Phidget Control Panel, you will see something like this:

DAQ1000 Panel.jpg


The Phidget Control Panel will list all connected Phidgets and associated objects, as well as the following information:

  • Serial number: allows you to differentiate between similar Phidgets.
  • Channel: allows you to differentiate between similar objects on a Phidget.
  • Version number: corresponds to the firmware version your Phidget is running. If your Phidget is listed in red, your firmware is out of date. Update the firmware by double-clicking the entry.


The Phidget Control Panel can also be used to test your device. Double-clicking on an object will open an example.

Voltage Input

Double-click on a Voltage Input object in order to run the example:

DAQ1000 VoltageInputSensor Example.jpg


General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:

  • Modify the change trigger and/or data interval value by dragging the sliders. For more information on these settings, see the data interval/change trigger page.
  • If you have an analog sensor connected that you bought from us, you can select it from the Sensor Type drop-down menu. The example will then convert the voltage into a more meaningful value based on your sensor, with units included, and display it beside the Sensor Value label. Converting voltage to a Sensor Value is not specific to this example, it is handled by the Phidget libraries, with functions you have access to when you begin developing!


For more information about Voltage Inputs, check out the Voltage Input Primer.

Voltage Ratio Input

Double-click on a Voltage Ratio Input object in order to run the example:

DAQ1000 VoltageRatioSensor Example.jpg


General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:

  • The voltage ratio is reported in Volts per Volt. For example, if the Phidget is providing 5V and the sensor is sending back 2.5V, the ratio will be 0.5V/V.
  • Modify the change trigger and/or data interval value by dragging the sliders. For more information on these settings, see the data interval/change trigger page.
  • If you have an analog sensor connected that you bought from us, you can select it from the Sensor Type drop-down menu. The example will then convert the voltage into a more meaningful value based on your sensor, with units included, and display it beside the Sensor Value label. Converting voltage to a Sensor Value is not specific to this example, it is handled by the Phidget libraries, with functions you have access to when you begin developing!


For more information about Voltage Ratio Inputs, check out the Voltage Ratio Input Primer.

Finding The Addressing Information

Before you can access the device in your own code, and from our examples, you'll need to take note of the addressing parameters for your Phidget. These will indicate how the Phidget is physically connected to your application. For simplicity, these parameters can be found by clicking the button at the top of the Control Panel example for that Phidget.

The locate Phidget button is found in the device information box

In the Addressing Information window, the section above the line displays information you will need to connect to your Phidget from any application. In particular, note the Channel Class field as this will be the API you will need to use with your Phidget, and the type of example you should use to get started with it. The section below the line provides information about the network the Phidget is connected on if it is attached remotely. Keep track of these parameters moving forward, as you will need them once you start running our examples or your own code.

All the information you need to address your Phidget

Using Your Own Program

You are now ready to start writing your own code for the device. The best way to do that is to start from our examples:

This Phidget is compatible with the VoltageInput Examples and the VoltageRatioInput Examples.

Once you have your example, you will need to follow the instructions on the page for your programming language to get it running. To find these instructions, select your programming language from the Software Overview page.

Technical Details

If you want to know more about the capabilities of the DAQ1000, check the Analog Input Primer.

What to do Next

  • Programming Languages - Find your preferred programming language here and learn how to write your own code with Phidgets!
  • Phidget Programming Basics - Once you have set up Phidgets to work with your programming environment, we recommend you read our page on to learn the fundamentals of programming with Phidgets.