1018 User Guide: Difference between revisions

From Phidgets Support
No edit summary
No edit summary
 
(22 intermediate revisions by 3 users not shown)
Line 1: Line 1:
__NOINDEX__
__NOTOC__
<metadesc>The Phidgets workhorse. Connect sensors, control outputs, and read in digital inputs.</metadesc>
[[Category:UserGuide]]
[[Category:UserGuide]]
==Part 1: Setup==
<div class="phd-deck-sequence">
{{PT1_1018_CHOOSE}}
{{PT1_1018_WIN}}{{PT1_1018_MAC}}{{PT1_1018_LNX}}
</div>


===Required Hardware===
== Part 2: Using Your Phidget ==


* A 1018 Phidget InterfaceKit
===About===
* Sensors, LEDs, and switches to test the InterfaceKit
The 1018 PhidgetInterfaceKit 8/8/8 has:
* A USB Cable
* '''8 Digital Inputs''' for reading switches or logic-level sensors
* A computer
* '''8 Digital Outputs''' for LEDs or simple logic-level output
* '''8 Analog Inputs''' for reading 0-5V sensors


===Connecting the Pieces===
Each analog port can be opened as a '''VoltageInput''' or a '''VoltageRatioInput''' object, depending on what kind of sensor you're connecting to.
[[Image:1018_0_Connecting_the_Hardware.jpg|300px|right|link=]]
# Connect any sensors to the voltage inputs on the 1018.
# Connect the 1018 InterfaceKit to the computer using a USB cable.
# Connect a switch or a piece of wire connecting ground to one of the digital input terminals.
# Connect an LED to one of the Digital Outputs by inserting the long LED wire into the digital output 0 and the shorter wire into Ground.


<br clear="all">
===Explore Your Phidget Channels Using The Control Panel===


==Testing Using Windows==
You can use your Control Panel to explore your Phidget's channels.


{{UGcontrolpanel|1018}}
'''1.''' Open your Control Panel, and you will find the following channels:


{{ugVoltageInputSensor}}
[[Image:1018_Panel.jpg|link=|center]]


{{ugVoltageRatioSensor}}
'''2.''' Double click on a channel to open an example program. Each channel belongs to the '''Digital Input''', '''Digital Output''', '''Voltage Input''' or '''Voltage Ratio Input''' channel class:


{{ugDigitalInputAL}}
{{UGC-Start}}


{{ugDigitalOutput}}
{{UGC-Entry|Digital Input:| Read the state of a switch
|
In your Control Panel, double click on "Digital Input":


{{UGotheros}}
[[Image:1018-DigitalInput.jpg|center|link=]]}}


==Technical Details==
{{UGC-Entry|Digital Output:| Control LEDs, relays, digital circuits, and other simple electronics
|
In your Control Panel, double click on "Digital Output":


If you want to know more about the input/output capabilities of the 1018 InterfaceKit, check the [[Digital Input Primer]], [[Digital Output Primer]], and the [[Analog Input Primer]].
[[Image:1018-DigitalOutput.jpg|center|link=]]}}


{{UGnext|}}
{{UGC-Entry|Voltage Input:| Non-ratiometric Analog sensors and monitoring 5V digital circuits
|
In your Control Panel, double click on "Voltage Input":


==Product History==
[[Image:1018-VoltageInput.jpg|center|link=]]}}
{{UGhist}}
 
{{UGrow2|1018_0|July 2007    |0|824|Product Release}}
{{UGC-Entry|Voltage Ratio Input:| Analog ratiometric sensors
{{UGrow2|1018_0|September 2007|0|825|SPI Overclocking issue fixed}}
|
{{UGrow2|1018_1|May 2008      |1|826|Added RC Filtering to Digital Inputs, PCB X Dimension increased to 3.27” }}
In your Control Panel, double click on "Voltage Ratio Input":
{{UGrow2|1018_2|April 2010    |2|900|Configurable data sampling speed. Replace USB connector with Mini-USB connector }}
 
{{UGrow2|1018_2|April 2010    |2|901|Fixed bugs relating to changing the ratiometric setting and overflow reporting }}
[[Image:1018-VoltageRatioInput.jpg|center|link=]]}}
{{UGrow2|1018_2|September 2010|2|902|Fixed certain output set commands from PC being ignored}}
 
{{UGrow2|1018_2|November 2010 |2|903|USB Product Name descriptor changed from "Phidget" to "PhidgetInterfaceKit" }}
{{UGC-End}}
{{UGrow2|1018_2|May 2011      |2|904|getLabelString fixed for labels longer than 7 characters }}
 
{{UG-Part3}}
 
== Part 4: Advanced Topics and Troubleshooting ==
{{UGC-Start}}
{{UGC-Addressing}}
{{UGC-Graphing}}
{{UGC-DataInterval}}
{{UGC-Firmware}}
{{UGC-Entry|Analog Inputs||
If you want to know more about the capabilities of the analog inputs on this device, check the [[Analog Input Guide]].
}}
{{UGC-Entry|Digital Inputs||
If you want to know more about the capabilities of the digital inputs on this device, check the [[Digital Input Guide]].
}}
{{UGC-Entry|Digital Outputs||
If you want to know more about the capabilities of the digital outputs on this device, check the [[InterfaceKit Digital Outputs]].
}}
 
{{UGC-End}}

Latest revision as of 19:57, 1 June 2023


Part 1: Setup

PhidgetInterfaceKit 8/8/8 - Select OS

PhidgetInterfaceKit 8/8/8

Welcome to the 1018 user guide! In order to get started, make sure you have the following hardware on hand:

  • a 1018 Phidget InterfaceKit
  • a USB cable and computer
  • something to use with the 1018 (e.g. LEDs, switches, analog sensors, etc)

Select your Operating System:

«
»

PhidgetInterfaceKit 8/8/8 - Windows

Step 1: Install Phidgets Library

Step 2: Connect Devices

Step 3: Verify Connection

Step 1: Install Phidgets Library

Before you begin using your Phidgets, you will need to install the Phidget Library.

1. Download the installer for your system:

● 32-bit Installer Download

● 64-bit Installer Download

If you're unsure which one you should get, press ⊞ WIN + Pause/Break:

Before installing our libraries, be sure to read our Software License.

Step 1: Install Phidgets Library

2. Open the download. If it asks you for permission, select Run

Step 1: Install Phidgets Library

3a. Select Next

Step 1: Install Phidgets Library

3b. Read the Licence Agreement. Select Next.

Step 1: Install Phidgets Library

3c. Choose Installation Location. Select Next.

Step 1: Install Phidgets Library

3d. Confirm Install

Step 1: Install Phidgets Library

3e. Wait for Installation to complete. This should only take a few moments.

Step 1: Install Phidgets Library

3f. Installation Complete. Close installation Window.

Step 2: Connect Devices

● Connect USB Cable to your computer and PhidgetInterfaceKit

● Connect any sensors or LEDs you want to use

Step 3: Verify Connection

1. Open the Phidgets Control Panel:

If your Control Panel does not open, look in your taskbar. Double click the Phidget Icon.

Step 3: Verify Connection

2. If connected, your Phidgets will appear in the Phidget Control Panel.

Done!

If you're able to see and interact with your devices in the Phidget Control Panel, you're done with the Setup part of this guide.

Scroll down to Part 2: Using Your Phidget for the next step.


For more help installing in Windows (e.g. manual install, using a VM, etc.), visit this page:

Windows Advanced Information

«
»

PhidgetInterfaceKit 8/8/8 - MacOS

Step 1: Install Phidgets Library

Step 2: Connect Devices

Step 3: Verify Connection

Step 1: Install Phidgets Library

Before you begin using your Phidgets, you will need to install the Phidget Library.

1. Download the installer for your system:

● OS X 10.11+: Installer Download

● Mac OS X 10.7 - OS X 10.10: Installer Download

● Mac OS X 10.5 - OS X 10.6: Installer Download


Before installing our libraries, be sure to read our Software License.

Step 1: Install Phidgets Library

2. Open the download and double click on Phidgets.pkg

Step 1: Install Phidgets Library

3a. Select Continue

Step 1: Install Phidgets Library

3b. Read and continue. Read the License and click Agree.

Step 1: Install Phidgets Library

3c. Here, you have the option to select the installation location. Select Install to continue.

Step 1: Install Phidgets Library

3d. MacOS may ask for permission to install. Enter your username and password and Install Software.

Step 1: Install Phidgets Library

3e. Wait for Installation to complete. This should only take a few moments.

Step 1: Install Phidgets Library

3f. You may see a message that the extension has been blocked. Select Open Security Preferences.

Step 1: Install Phidgets Library

3g. Beside the message for Phidgets Inc, Click Allow.

Step 1: Install Phidgets Library

3h. Installation Complete, Click Close.

Step 1: Install Phidgets Library

3i. To delete the installer, click Move to Trash.

Step 2: Connect Devices

● Connect USB Cable to your computer and PhidgetInterfaceKit

● Connect any sensors or LEDs you want to use

Step 3: Verify Connection

1. Open the Phidgets Control Panel:

Step 3: Verify Connection

2. If connected, your Phidgets will appear in the Phidget Control Panel.

Done!

If you're able to see and interact with your devices in the Phidget Control Panel, you're done with the Setup part of this guide.

Scroll down to Part 2: Using Your Phidget for the next step.


For more info installing in MacOS (e.g. developer tools, driver extension, etc.), visit this page:

MacOS Advanced Information

«
»

Phidget InterfaceKit 8/8/8 - Linux

Step 1: Install Phidgets Library

Step 2: Connect Devices

Step 3: Verify Connection

Step 1: Install Phidgets Library

1. First, you need to install the libusb-1.0 development libraries. For example, in Debian based distributions:

apt-get install libusb-1.0-0-dev


You’ll also need a C compiler and builder, if you don’t already have one installed.

apt-get install gcc
apt-get install make

Step 1: Install Phidgets Library

2. Next, download and unpack the Phidgets library:

libphidget22

Step 1: Install Phidgets Library

3. Use the following commands in the location you unpacked to install the library:

./configure
make
sudo make install

Step 1: Install Phidgets Library

4. (Optional) You can also download and unpack the following optional packages:

phidget22networkserver - Phidget Network Server, which enables the use of Phidgets over your network

phidget22admin - Admin tool to track who is connected to your Phidgets when using the network server

libphidget22extra - Required for phidget22networkserver and phidget22admin

libphidget22java - The Java libraries for Phidget22


For installation instructions for these packages, see the README file included with each one.

Step 2: Connect Devices

● Connect USB Cable to your computer and PhidgetInterfaceKit

● Connect any sensors or LEDs you want to use

Step 3: Verify Connection

1. The easiest way to verify that your libraries are working properly is to compile and run an example program. Download and unpack this C example that will detect any Phidget:

HelloWorld C Example

Step 3: Verify Connection

2. Next, open the terminal in the location where you unpacked the example. Compile and run using:

gcc HelloWorld.c -o HelloWorld -lphidget22
sudo ./HelloWorld

ou should receive a “Hello” line for each Phidget channel that is discovered:

I don’t see any Phidgets show up in the HelloWorld example

You need to run it with sudo in order to be able to access USB devices. In order to use Phidgets without sudo, you need to set your udev rules. See the Advanced Information page on the final slide of this guide for details.

Done!

If you're able to see your devices in the Hello World example, you're done with the Setup part of this guide.

Scroll down to Part 2: Using Your Phidget for the next step.


For more info installing in Linux (e.g. Udev rules, old versions, etc.), visit this page:

Linux Advanced Information

«
»

Part 2: Using Your Phidget

About

The 1018 PhidgetInterfaceKit 8/8/8 has:

  • 8 Digital Inputs for reading switches or logic-level sensors
  • 8 Digital Outputs for LEDs or simple logic-level output
  • 8 Analog Inputs for reading 0-5V sensors

Each analog port can be opened as a VoltageInput or a VoltageRatioInput object, depending on what kind of sensor you're connecting to.

Explore Your Phidget Channels Using The Control Panel

You can use your Control Panel to explore your Phidget's channels.

1. Open your Control Panel, and you will find the following channels:

1018 Panel.jpg

2. Double click on a channel to open an example program. Each channel belongs to the Digital Input, Digital Output, Voltage Input or Voltage Ratio Input channel class:

Expand All
Digital Input: Read the state of a switch

In your Control Panel, double click on "Digital Input":

1018-DigitalInput.jpg
Digital Output: Control LEDs, relays, digital circuits, and other simple electronics

In your Control Panel, double click on "Digital Output":

1018-DigitalOutput.jpg
Voltage Input: Non-ratiometric Analog sensors and monitoring 5V digital circuits

In your Control Panel, double click on "Voltage Input":

1018-VoltageInput.jpg
Voltage Ratio Input: Analog ratiometric sensors

In your Control Panel, double click on "Voltage Ratio Input":

1018-VoltageRatioInput.jpg

Part 3: Create your Program

Part 4: Advanced Topics and Troubleshooting

Expand All
How do I know what channel, serial number, or hub port to use in my program?

Before you open a Phidget channel in your program, you can set these properties to specify which channel to open. You can find this information through the Control Panel.

1. Open the Control Panel and double-click on the red map pin icon:

The locate Phidget button is found in the device information box

2. The Addressing Information window will open. Here you will find all the information you need to address your Phidget in your program.

All the information you need to address your Phidget


See the Phidget22 API for your language to determine exact syntax for each property.

How can I plot or record sensor data?

Note: Graphing and logging is currently only supported in the Windows version of the Phidget Control Panel.

In the Phidget Control Panel, open the channel for your device and click on the Plot.jpg icon next to the data type that you want to plot. This will open up a new window:

Plot2.jpg

If you need more complex functionality such as logging multiple sensors to the same sheet or performing calculations on the data, you'll need to write your own program. Generally this will involve addressing the correct channel, opening it, and then creating an Event Handler and adding graphing/logging code to it.

The quickest way to get started is to download some sample code for your desired programming language and then search google for logging or plotting in that language (e.g. "how to log to csv in python") and add the code to the existing change handler.

Filtering

You can perform filtering on the raw data in order to reduce noise in your graph. For more information, see the Control Panel Graphing page.

Graph Type

You can perform a transform on the incoming data to get different graph types that may provide insights into your sensor data. For more information on how to use these graph types, see the Control Panel Graphing page.

Setting the Change Trigger and Data Interval

The Change Trigger is the minimum change in the sensor data needed to trigger a new data event.

The Data Interval is the time (in ms) between data events sent out from your Phidget.

The Data Rate is the reciprocal of Data Interval (measured in Hz), and setting it will set the reciprocal value for Data Interval and vice-versa.

You can modify one or both of these values to achieve different data outputs. You can learn more about these properties here.

Upgrading or Downgrading Device Firmware

Firmware Upgrade

MacOS users can upgrade device firmware by double-clicking the device row in the Phidget Control Panel.

Linux users can upgrade via the phidget22admin tool (see included readme for instructions).

Windows users can upgrade the firmware for this device using the Phidget Control Panel as shown below.

ControlpanelFWup.jpg

Firmware Downgrade

Firmware upgrades include important bug fixes and performance improvements, but there are some situations where you may want to revert to an old version of the firmware (for instance, when an application you're using is compiled using an older version of phidget22 that doesn't recognize the new firmware).

MacOS and Linux users can downgrade using the phidget22admin tool in the terminal (see included readme for instructions).

Windows users can downgrade directly from the Phidget Control Panel if they have driver version 1.9.20220112 or newer:

ControlpanelFWdown.jpg

Firmware Version Numbering Schema

Phidgets device firmware is represented by a 3-digit number. For firmware patch notes, see the device history section on the Specifications tab on your device's product page.

FWversion.jpg

  • If the digit in the 'ones' spot changes, it means there have been bug fixes or optimizations. Sometimes these changes can drastically improve the performance of the device, so you should still upgrade whenever possible. These upgrades are backwards compatible, meaning you can still use this Phidget on a computer that has Phidget22 drivers from before this firmware upgrade was released.
  • If the digit in the 'tens' spot changes, it means some features were added (e.g. new API commands or events). These upgrades are also backwards compatible, in the sense that computers running old Phidget22 drivers will still be able to use the device, but they will not be able to use any of the new features this version added.
  • If the digit in the 'hundreds' spot changes, it means a major change has occurred (e.g. a complete rewrite of the firmware or moving to a new architecture). These changes are not backwards compatible, so if you try to use the upgraded board on a computer with old Phidget22 drivers, it will show up as unsupported in the Control Panel and any applications build using the old libraries won't recognize it either. Sometimes, when a Phidget has a new hardware revision (e.g. 1018_2 -> 1018_3), the firmware version's hundreds digit will change because entirely new firmware was needed (usually because a change in the processor). In this case, older hardware revisions won't be able to be upgraded to the higher version number and instead continue to get bug fixes within the same major revision.
Analog Inputs

If you want to know more about the capabilities of the analog inputs on this device, check the Analog Input Guide.

Digital Inputs

If you want to know more about the capabilities of the digital inputs on this device, check the Digital Input Guide.

Digital Outputs

If you want to know more about the capabilities of the digital outputs on this device, check the InterfaceKit Digital Outputs.