1042 User Guide: Difference between revisions

From Phidgets Support
No edit summary
No edit summary
 
(12 intermediate revisions by 3 users not shown)
Line 1: Line 1:
__NOINDEX__
<metadesc>The PhidgetSpatial 3/3/3 basic has a 3-axis accelerometer, gyroscope and compass and connects to your computer via USB.</metadesc>
[[Category:UserGuide]]
[[Category:UserGuide]]
==Getting Started==
{{UGIntro|1042}}
*[{{SERVER}}/products.php?product_id=1042 1042 Spatial Phidget]
*USB cable and computer


===Required Hardware===


* A [{{SERVER}}/products.php?product_id=1042 1042 Spatial Phidget]
Next, you will need to connect the pieces:
* A USB Cable
[[Image:1056_0_Connecting_The_Hardware.jpg|500px|right|link=]]
* A computer
 
===Connecting the Pieces===
[[Image:1056_0_Connecting_The_Hardware.jpg|400px|right|link=]]
# Connect your device to your computer using the USB cable.
# Connect your device to your computer using the USB cable.


<br clear="all">
<br clear="all">
==Testing Using Windows==
{{UGIntroDone|1042}}
 
==Using the 1042==


{{UGcontrolpanel|1042}}
{{UGcontrolpanel|1042}}


{{ugAccelerometer|1042}}
{{ugAccelerometer|1042|}}


{{ugGyroscope|1042}}
{{ugGyroscope|1042}}
Line 24: Line 27:
{{ugSpatial|1042}}
{{ugSpatial|1042}}


{{UGotheros}}
{{ugAddressingInformation}}
 
{{ugUsingYourOwnProgram|1042}}


==Technical Details==
==Technical Details==
===3-Axis Accelerometer===
The 1042 has a 3-Axis accelerometer that can measure ±8 g (±78 m/s2) per axis.  It will measure both dynamic acceleration (change in velocity) and static acceleration (gravity vector). 
====Orientation====
[[File:1041 0 Axis Diagram.jpg|500px|link=]]


===3-Axis Accelerometer===
When working with an accelerometer it is important to know which is the positive and negative direction on each of the axes.  This can be determined by orienting the accelerometer along each axis and checking the output. The above image shows what the axis readings should be for each orientation of the 1042.


The PhidgetSpatial 3/3/3 has a 3-Axis accelerometer that can measure ±8 g (±78 m/s2) per axis.  It will measure both dynamic acceleration (change in velocity) and static acceleration (gravity vector). 


For more information on how to use the accelerometer, check the [[Accelerometer Primer]].
For more information on how to use the accelerometer, check the [[Accelerometer Guide]].


===3-Axis Gyroscope===
===3-Axis Gyroscope===
 
For more information on the gyroscope, see the [[Gyroscope Guide]].
For more information on the gyroscope, see the [[Gyroscope Primer]].


===3-Axis Magnetometer (Compass)===
===3-Axis Magnetometer (Compass)===
The magnetometer reports the sum of all magnetic fields acting on the 1042. The Earth's magnetic field is only one source that affects this measurement. In order to get accurate bearing data from the magnetometer ( i.e. to find magnetic north as a compass) any interfering magnetic effects need to be calibrated out. For more information about calibration, see the [[#Magnetic Error Correction (Calibration)|section below]], or the [[Magnetometer Guide]].


The magnetometer reports the sum of all magnetic fields acting on the 1042 device. The earth’s magnetic field is only one source that affects this measurement. In order to get accurate bearing data from the magnetometer - ie. to find magnetic north as a compass - any interfering magnetic effects need to be calibrated out. For more information about calibration, see the [[#Magnetic Error Correction (Calibration)|section below]], or the [[Compass Primer]].
Any magnetic field that is stationary with respect to the 1042, and less than ± 3 Gauss, can be calibrated out of the magnetic field measurement. This includes both hard and soft iron effects caused by nearby ferrous and magnetic materials. Interfering magnetic fields that vary in strength and orientation with respect to the 1042 can not be easily calibrated out.


Any magnetic field that is stationary with respect to the 1042 device, and less than ± 3 Gauss, can be calibrated out of the magnetic field measurement. This includes both hard and soft iron effects caused by nearby ferrous and magnetic materials. Interfering magnetic fields that vary in strength and orientation with respect to the 1042 device cannot be easily calibrated out.
Magnetic field data will become unavailable during every other sample as the compass performs internal calibrations. When this happens, the magneticField array in the SpatialData structure will either have a length of zero, or each element will equal <code>PUNK_DBL</code>, depending on the API being used. This needs to be handled explicitly in the event handling code to avoid erroneous program behavior. The maximum sampling rate of the compass is 125 Hz.


Magnetic field data will become unavailable during every other sample as the compass performs internal calibrations. When this happens, the magneticField array in the SpatialData structure will either have a length of zero, or each element will equal <code>PUNK_DBL</code>, depending on the API being used. This needs to be handled explicitly in the event handling code to avoid erroneous program behavior. The maximum sampling rate of the compass is 125 Hz.


{{UGC-CompassCal}}


{{compasscalibration|1042}}


For more information on magnetometers (compasses), see the [[Compass Primer]].
For more information on magnetometers (compasses), see the [[Magnetometer Guide]].


{{UGnext|}}
{{UGnext|}}

Latest revision as of 22:02, 18 November 2024


Getting Started

Welcome to the 1042 user guide! In order to get started, make sure you have the following hardware on hand:


Next, you will need to connect the pieces:

1056 0 Connecting The Hardware.jpg
  1. Connect your device to your computer using the USB cable.


Now that you have everything together, let's start using the 1042!

Using the 1042

Phidget Control Panel

In order to demonstrate the functionality of the 1042, the Phidget Control Panel running on a Windows machine will be used.


The Phidget Control Panel is available for use on both macOS and Windows machines.

Windows

To open the Phidget Control Panel on Windows, find the Ph.jpg icon in the taskbar. If it is not there, open up the start menu and search for Phidget Control Panel

Windows PhidgetTaskbar.PNG

macOS

To open the Phidget Control Panel on macOS, open Finder and navigate to the Phidget Control Panel in the Applications list. Double click on the Ph.jpg icon to bring up the Phidget Control Panel.


For more information, take a look at the getting started guide for your operating system:


Linux users can follow the getting started with Linux guide and continue reading here for more information about the 1042.

First Look

After plugging the 1042 into your computer and opening the Phidget Control Panel, you will see something like this:

1042 Panel.jpg


The Phidget Control Panel will list all connected Phidgets and associated objects, as well as the following information:

  • Serial number: allows you to differentiate between similar Phidgets.
  • Channel: allows you to differentiate between similar objects on a Phidget.
  • Version number: corresponds to the firmware version your Phidget is running. If your Phidget is listed in red, your firmware is out of date. Update the firmware by double-clicking the entry.


The Phidget Control Panel can also be used to test your device. Double-clicking on an object will open an example.

Accelerometer

Double-click on the Accelerometer object in order to run the example:

1042 Accelerometer Example.jpg


General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:

  • Modify the change trigger and/or data interval value by dragging the sliders. For more information on these settings, see the data interval/change trigger page.
  • The measured values reported in g-force can be seen via labels as well as graphical dials. Try tilting the 1042 in different directions to see the labels and graphics change.
  • An extremely accurate timestamp is also reported with the g-force values.


Gyroscope

Double-click on the Gyroscope object in order to run the example:

1042 Gyroscope Example.jpg


General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:

  • Modify the change trigger and/or data interval value by dragging the sliders. For more information on these settings, see the data interval/change trigger page.
  • The Zero Gyro button is used to compensate for the drift that is inherent to all gyroscopes. The gyroscope primer has more information about this subject.
  • The measured values reported in degrees per second can be seen via labels as well as graphical dials. Try rotating the 1042 in different directions to see the labels and graphics change.
  • An extremely accurate timestamp is also reported with the g-force values.


Magnetometer

Double-click on the Magnetometer object in order to run the example:

1042 Magnetometer Example.jpg


General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:

  • Modify the change trigger and/or data interval value by dragging the sliders. For more information on these settings, see the data interval/change trigger page.
  • Use the Set Params... button to set the calibration parameters. For more information about calibration, see the technical section.
  • The measured values reported in Gauss can be seen via labels as well as a graphical diagram. The diagram can help you visualize the magnetic field vector.
  • An extremely accurate timestamp is also reported with the Gauss values.


Spatial

Double-click on the Spatial object in order to run the example:

1042 Spatial Example.jpg


The Spatial example demonstrates that you can receive data from the accelerometer, gyroscope, and magnetometer all at once by using the Spatial object rather than the other three objects individually.

Finding The Addressing Information

Before you can access the device in your own code, and from our examples, you'll need to take note of the addressing parameters for your Phidget. These will indicate how the Phidget is physically connected to your application. For simplicity, these parameters can be found by clicking the button at the top of the Control Panel example for that Phidget.

The locate Phidget button is found in the device information box

In the Addressing Information window, the section above the line displays information you will need to connect to your Phidget from any application. In particular, note the Channel Class field as this will be the API you will need to use with your Phidget, and the type of example you should use to get started with it. The section below the line provides information about the network the Phidget is connected on if it is attached remotely. Keep track of these parameters moving forward, as you will need them once you start running our examples or your own code.

All the information you need to address your Phidget

Using Your Own Program

You are now ready to start writing your own code for the device. The best way to do that is to start from our Code Samples.

Select your programming language of choice from the drop-down list to get an example for your device. You can use the options provided to further customize the example to best suit your needs.

Code Sample Choose Language.png


Once you have your example, you will need to follow the instructions on the page for your programming language to get it running. To find these instructions, select your programming language from the Programming Languages page.

Technical Details

3-Axis Accelerometer

The 1042 has a 3-Axis accelerometer that can measure ±8 g (±78 m/s2) per axis. It will measure both dynamic acceleration (change in velocity) and static acceleration (gravity vector).

Orientation

1041 0 Axis Diagram.jpg

When working with an accelerometer it is important to know which is the positive and negative direction on each of the axes. This can be determined by orienting the accelerometer along each axis and checking the output. The above image shows what the axis readings should be for each orientation of the 1042.


For more information on how to use the accelerometer, check the Accelerometer Guide.

3-Axis Gyroscope

For more information on the gyroscope, see the Gyroscope Guide.

3-Axis Magnetometer (Compass)

The magnetometer reports the sum of all magnetic fields acting on the 1042. The Earth's magnetic field is only one source that affects this measurement. In order to get accurate bearing data from the magnetometer ( i.e. to find magnetic north as a compass) any interfering magnetic effects need to be calibrated out. For more information about calibration, see the section below, or the Magnetometer Guide.

Any magnetic field that is stationary with respect to the 1042, and less than ± 3 Gauss, can be calibrated out of the magnetic field measurement. This includes both hard and soft iron effects caused by nearby ferrous and magnetic materials. Interfering magnetic fields that vary in strength and orientation with respect to the 1042 can not be easily calibrated out.

Magnetic field data will become unavailable during every other sample as the compass performs internal calibrations. When this happens, the magneticField array in the SpatialData structure will either have a length of zero, or each element will equal PUNK_DBL, depending on the API being used. This needs to be handled explicitly in the event handling code to avoid erroneous program behavior. The maximum sampling rate of the compass is 125 Hz.


Calibrating the Magnetometer

Magnetometer Calibration

Magnetometer Calibration Guide

In order for your magnetometer to provide accurate heading information, it must be calibrated.

Follow this guide to complete the calibration process.

1. Open the Magnetometer example for your device, and click the Calibrate button. This will open the Compass Calibration tool.

2. If your device supports heating, we recommend checking the HeatingEnabled checkbox. Wait for the temperature reading to turn green:

If your Spatial does not support heating (neither of the above controls will be available), you can skip this step.

3. Next, decide if you're using 2-axis or 3-axis calibration:

● If the spatial is free to move in all directions, use 3-axis

● If the spatial is being kept mostly level (e.g. in a car), use 2-axis

4. You can leave the Local Field Strength at 1.0 for general use since magnitude doesn't affect heading. If you need more quantitative results, look up your local value.

5. Make sure your Phidget Spatial is firmly in the position you intend to calibrate it for, and begin by clicking the Start button.

Begin rotating the structure your Phidget is mounted to. Notice the red dots appearing on the graph.

6. Try to rotate it so that it fills out as much of the sphere (or circle in 2-axis mode) as possible. When you're finished, click Stop.

You should now see red and green spheres (or circles) in the graph. The red one is the raw measurements, and the green one is the calibrated measurements.

Newly calibrated data from the magnetometer will be indicated by a green line that matches the sphere. The green sphere should be more centered than the red one. If not, try repeating the calibration.

You're now done the calibration process! On most Phidget Spatials, the calibration will be stored in flash, so it stays calibrated to this environment even across power cycles.

7. If you need to repeat this exact calibration, you can save the values listed in the text box.

You can use these values in the setMagnetometerCorrectionParameters method. See our API Documentation for more details.

«
»


For more information on magnetometers (compasses), see the Magnetometer Guide.

What to do Next

  • Programming Languages - Find your preferred programming language here and learn how to write your own code with Phidgets!
  • Phidget Programming Basics - Once you have set up Phidgets to work with your programming environment, we recommend you read our page on to learn the fundamentals of programming with Phidgets.