1203 User Guide: Difference between revisions

From Phidgets Support
No edit summary
 
(21 intermediate revisions by 3 users not shown)
Line 1: Line 1:
__NOINDEX__
<metadesc>The PhidgetTextLCD has a Phidget InterfaceKit in addition to a 2x20-character White Backlit LCD Display. Connects to your computer via USB.</metadesc>
[[Category:UserGuide]]
[[Category:UserGuide]]
{{UserguideTOC|1203.jpg|1203}}
==Getting Started==
==Getting Started==
{{UGIntro|1203}}
*[{{SERVER}}/products.php?product_id=1203 1203 Phidget TextLCD]
*USB cable and computer
*something to use with the 1203 (e.g. sensors, LEDs, switches, etc.)


===Checking the Contents===
{{UGbox|
'''You should have received:'''
* A PhidgetTextLCD 8/8/8 - White
* A mini-USB cable
|
'''In order to test your new Phidget you will also need:'''
* A piece of wire to test the digital inputs
* An LED to test the digital outputs
*An analog sensor to test the analog inputs.  We are using the 1124-Precision Temperature Sensor
||}}


===Connecting the Pieces===
Next, you will need to connect the pieces:
{{UGbox|
[[Image:1203_2_Connecting_The_Hardware.jpg|500px|right|link=]]
#Connect the Analog Sensor to the analog input port 0 using a Phidgets sensor cable. The analog ports are numbered from 0 to 7 starting from the left.
# Connect any sensors to the voltage inputs on the 1023.
#Connect one end of the wire to digital input port 0 and the other end to the ground  connection.
# Connect a switch or a piece of wire connecting ground to one of the digital input terminals.
#Connect the LED by inserting the long LED wire into the digital output 0 and the shorter wire into Ground.
# Connect an LED to one of the Digital Outputs by inserting the long LED wire into the digital output 0 and the shorter wire into Ground.
#Connect the PhidgetTextLCD board to the PC using the USB cable.
# Connect the 1203 TextLCD to the computer using a USB cable.
|
[[File:1203_2_Connecting_The_Hardware.jpg|400px|link=]]
||}}


{|
<br clear="all">
|valign="top"|This device shows up as just a combination of a 1018 and a single port 1204.  Because of this we ask that you refer to the manuals for the [[1018 User Guide|1018]] and [[1204 User Guide|1204]] respectively for information on testing your device, technical details, and the API for each half of this device.||[[image:1203 2 Control Panel InterfaceKit Screen.jpg|link=|300px]]
{{UGIntroDone|1203}}
|}


==Product History==
==Using the 1203==
{{UGhist}}
{{UGcontrolpanel|1203}}
{{UGrow|July 2005 |0 |120 |Product Release }}
 
{{UGrow|February 2010|2|200|Added RC filtering to digital inputs, Configurable speed per analog input.  Replaced USB connector with Mini-USB connector.}}
{{ugTextLCD|1203|Phidget TextLCD 20X2}}
{{UGrow|April 2010  |2|201|fixed data clear on ratiometric switch, fixed overflow report for inputs 2-7}}
 
{{UGrow|September 2010|2|202|fixed bug in output set}}
{{ugVoltageInputSensor|1203}}
{{UGrow|May 2011    |2|203|getLabelString fixed for labels longer than 7 characters}}
 
{{ugVoltageRatioSensor|1203}}
 
{{ugDigitalInput|1203|{{UGDigitalInputActiveLow}}}}
 
{{ugDigitalOutput|1203|}}
 
{{ugAddressingInformation}}
 
{{ugUsingYourOwnProgram|1203}}
 
==Technical Details==
If you want to know more about the input/output capabilities of the 1203, check the [[Digital Input Guide]], [[InterfaceKit Digital Outputs]] page, and the [[Analog Input Guide]]. For more information about the LCD screen, see the [[LCD_Character_Display_Guide|LCD Guide]].
 
{{UGnext|}}

Latest revision as of 20:04, 1 June 2023


Getting Started

Welcome to the 1203 user guide! In order to get started, make sure you have the following hardware on hand:

  • 1203 Phidget TextLCD
  • USB cable and computer
  • something to use with the 1203 (e.g. sensors, LEDs, switches, etc.)


Next, you will need to connect the pieces:

1203 2 Connecting The Hardware.jpg
  1. Connect any sensors to the voltage inputs on the 1023.
  2. Connect a switch or a piece of wire connecting ground to one of the digital input terminals.
  3. Connect an LED to one of the Digital Outputs by inserting the long LED wire into the digital output 0 and the shorter wire into Ground.
  4. Connect the 1203 TextLCD to the computer using a USB cable.


Now that you have everything together, let's start using the 1203!

Using the 1203

Phidget Control Panel

In order to demonstrate the functionality of the 1203, the Phidget Control Panel running on a Windows machine will be used.


The Phidget Control Panel is available for use on both macOS and Windows machines.

Windows

To open the Phidget Control Panel on Windows, find the Ph.jpg icon in the taskbar. If it is not there, open up the start menu and search for Phidget Control Panel

Windows PhidgetTaskbar.PNG

macOS

To open the Phidget Control Panel on macOS, open Finder and navigate to the Phidget Control Panel in the Applications list. Double click on the Ph.jpg icon to bring up the Phidget Control Panel.


For more information, take a look at the getting started guide for your operating system:


Linux users can follow the getting started with Linux guide and continue reading here for more information about the 1203.

First Look

After plugging the 1203 into your computer and opening the Phidget Control Panel, you will see something like this:

1203 Panel.jpg


The Phidget Control Panel will list all connected Phidgets and associated objects, as well as the following information:

  • Serial number: allows you to differentiate between similar Phidgets.
  • Channel: allows you to differentiate between similar objects on a Phidget.
  • Version number: corresponds to the firmware version your Phidget is running. If your Phidget is listed in red, your firmware is out of date. Update the firmware by double-clicking the entry.


The Phidget Control Panel can also be used to test your device. Double-clicking on an object will open an example.

Text LCD

Double-click on the LCD object, labelled Phidget TextLCD 20X2, in order to run the example:

1203 TextLCD Example.jpg


General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:

  • Write in the Display text text boxes, your input will be mirrored on the LCD screen.
  • Drag the Contrast and Brightness sliders to a level where you can clearly see the text on the screen.
  • Toggle the Cursor and Cursor Blink checkbox to view the current cursor position on the LCD screen.
  • Toggle Custom Characters to show an example of the 1203 using bitmaps.
  • Use the Clear button to clear the screen.


Voltage Input

Double-click on a Voltage Input object in order to run the example:

1203 VoltageInputSensor Example.jpg


General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:

  • Modify the change trigger and/or data interval value by dragging the sliders. For more information on these settings, see the data interval/change trigger page.
  • If you have an analog sensor connected that you bought from us, you can select it from the Sensor Type drop-down menu. The example will then convert the voltage into a more meaningful value based on your sensor, with units included, and display it beside the Sensor Value label. Converting voltage to a Sensor Value is not specific to this example, it is handled by the Phidget libraries, with functions you have access to when you begin developing!


For more information about Voltage Inputs, check out the Voltage Input Primer.

Voltage Ratio Input

Double-click on a Voltage Ratio Input object in order to run the example:

1203 VoltageRatioSensor Example.jpg


General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:

  • The voltage ratio is reported in Volts per Volt. For example, if the Phidget is providing 5V and the sensor is sending back 2.5V, the ratio will be 0.5V/V.
  • Modify the change trigger and/or data interval value by dragging the sliders. For more information on these settings, see the data interval/change trigger page.
  • If you have an analog sensor connected that you bought from us, you can select it from the Sensor Type drop-down menu. The example will then convert the voltage into a more meaningful value based on your sensor, with units included, and display it beside the Sensor Value label. Converting voltage to a Sensor Value is not specific to this example, it is handled by the Phidget libraries, with functions you have access to when you begin developing!


For more information about Voltage Ratio Inputs, check out the Voltage Ratio Input Primer.

Digital Input

Double-click on a Digital Input object in order to run the example:

1203 DigitalInput Example.jpg

General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:

  • This is an active-low device, therefore, it will be true when connected to ground, and false when connected to a high voltage.

For more information about Digital Inputs, take a look at the Digital Input Primer

Digital Output

Double-click on a Digital Output object in order to run the example:

1203 DigitalOutput Example.jpg


General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:

  • Toggle the state of the digital output by pressing the button.

Finding The Addressing Information

Before you can access the device in your own code, and from our examples, you'll need to take note of the addressing parameters for your Phidget. These will indicate how the Phidget is physically connected to your application. For simplicity, these parameters can be found by clicking the button at the top of the Control Panel example for that Phidget.

The locate Phidget button is found in the device information box

In the Addressing Information window, the section above the line displays information you will need to connect to your Phidget from any application. In particular, note the Channel Class field as this will be the API you will need to use with your Phidget, and the type of example you should use to get started with it. The section below the line provides information about the network the Phidget is connected on if it is attached remotely. Keep track of these parameters moving forward, as you will need them once you start running our examples or your own code.

All the information you need to address your Phidget

Using Your Own Program

You are now ready to start writing your own code for the device. The best way to do that is to start from our Code Samples.

Select your programming language of choice from the drop-down list to get an example for your device. You can use the options provided to further customize the example to best suit your needs.

Code Sample Choose Language.png


Once you have your example, you will need to follow the instructions on the page for your programming language to get it running. To find these instructions, select your programming language from the Programming Languages page.

Technical Details

If you want to know more about the input/output capabilities of the 1203, check the Digital Input Guide, InterfaceKit Digital Outputs page, and the Analog Input Guide. For more information about the LCD screen, see the LCD Guide.

What to do Next

  • Programming Languages - Find your preferred programming language here and learn how to write your own code with Phidgets!
  • Phidget Programming Basics - Once you have set up Phidgets to work with your programming environment, we recommend you read our page on to learn the fundamentals of programming with Phidgets.