1018 User Guide: Difference between revisions

From Phidgets Support
No edit summary
Line 1: Line 1:
[[Category:UserGuide]]
[[Category:UserGuide]]
{{UserguideTOC|1018.jpg|1018}}
==Getting Started==


===Checking the Contents===
===Required Hardware===
{{UGbox|
 
'''You should have received:'''
* A 1018 Phidget InterfaceKit
* A PhidgetInterfaceKit 8/8/8 board
* Sensors, LEDs, and switches to test the InterfaceKit
* A Mini-USB Cable
* A USB Cable
|
* A computer
'''In order to test your new Phidget you will also need:'''
* A piece of wire to test the digital inputs
* An LED to test the digital outputs
* An Analog Sensor to test the analog inputs.
||}}


===Connecting the Pieces===
===Connecting the Pieces===
{{UGbox|
[[Image:1018_0_Connecting_the_Hardware.jpg|300px|right|link=]]
# Connect the Analog Sensor to the analog input port 6 using a Phidgets sensor cable. The analog ports are numbered from 0 to 7 starting from the left.
# Connect any sensors to the voltage inputs on the 1018.
# Connect the InterfaceKit board to the PC using the Mini-USB cable.
# Connect the 1018 InterfaceKit to the computer using a USB cable.
# Connect one end of the wire to digital input port 0 and the other end to the ground  connection.
# Connect a switch or a piece of wire connecting ground to one of the digital input terminals.
# Connect the LED by inserting the long LED wire into the digital output 0 and the shorter wire into Ground.
# Connect an LED to one of the Digital Outputs by inserting the long LED wire into the digital output 0 and the shorter wire into Ground.
|[[File:1018_2_Connecting_The_Hardware.jpg|400px|link=]]
||}}
 
===Testing Using Windows 2000 / XP / Vista / 7===
 
{{UGwin}}
 
===Running Phidgets Sample Program===
 
{{UGwin2|'''InterfaceKit-full'''}}


{{UGbox6|
<br clear="all">
Double Click on the [[File:Ph.jpg|link=]] icon to activate the Phidget Control Panel and make sure that the Phidget InterfaceKit 8/8/8  is properly attached  to your PC. 
|[[File:1018_2_Control_Panel_Screen.jpg|400px|link=]]
|
# Double Click on '''PhidgetInterfaceKit 8/8/8''' in the Phidget Control Panel to bring up InterfaceKit-full and check that the box labelled Attached contains the word True.
# Test the digital output by clicking on the white box to turn on the LED. Clicking again will turn the LED off. The bottom row shows the status of the request, while the top row displays the status of the digital output as reported by the device.
# Test the digital input by disconnecting the wire end connected to the digital input connector. The tick mark in the box will go away.
# Click on the Ratiometric Box if your sensor is ratiometric. Check the sensor product manual if you are not sure.
# Test the Analog Input by activating your sensor and check your results in Analog In number 6.
# You can adjust the input sensitivity by moving the slider pointer. This is the amount that an input must change to trigger an event that will modify the value in the Analog In box.
# Click on Sensors to launch the Advanced Sensor Form.
|[[File:1018_2_InterfaceKit_Screen.jpg|400px|link=]]
|
# In the drop down menu, select the Sensor you have attached to the analog input port 0 of the 1018.  In our case we select the 1129 - Touch Sensor.
# The state of the Touch Sensor is shown here.


'''Note:''' If you have connected a sensor
==Testing Using Windows==
that uses a formula, the calculated value
and the formula are displayed under the
drop down menu.
|[[File:1018 2 Advanced Sensor Screen.jpg|400px|link=]]
}}


===Testing Using Mac OS X===
{{UGcontrolpanel|1018}}


{{UGmac|Phidget InterfaceKit 8/8/8|InterfaceKit-full }}
{{ugVoltageInputSensor}}


===Using Linux===
{{ugVoltageRatioSensor}}


{{UGlinux}}
{{ugDigitalInputAL}}


===Using Windows Mobile / CE 5.0 / CE 6.0===
{{ugDigitalOutput}}


{{UGce}}
{{UGotheros}}


==Technical Details==
==Technical Details==
Line 71: Line 35:
If you want to know more about the input/output capabilities of the 1018 InterfaceKit, check the [[Digital Input Primer]], [[Digital Output Primer]], and the [[Analog Input Primer]].
If you want to know more about the input/output capabilities of the 1018 InterfaceKit, check the [[Digital Input Primer]], [[Digital Output Primer]], and the [[Analog Input Primer]].


==API==
{{UGnext|}}
{{UGapih}}
 
===Functions===
{{UGapi|int InputCount() [get] : Constant <nowiki>=</nowiki> 8
|Returns the number of digital inputs supported by this PhidgetInterfaceKit.
}}
 
{{UGapi|bool InputState(int InputIndex) [get]
|Returns the state of a particular digital input.  Digital inputs read True where they are activated and false when they are in their default state.
}}
 
{{UGapi|int OutputCount() [get] : Constant <nowiki>=</nowiki> 8
|Returns the number of digital outputs supported by this PhidgetInterfaceKit.
}}
 
{{UGapi|bool OutputState (int OutputIndex) [get,set]
|Sets/returns the state of a digital output. Setting this to true will activate the output, False is the default state. Reading the OutputState immediately after setting it will not return the value set - it will return the last state reported by the Phidget.
}}
 
{{UGapi|int SensorCount() [get] : Constant <nowiki>=</nowiki> 8
|Returns the number of sensors (Analog Inputs) supported by this PhidgetInterfaceKit.  Note that there is no way of determining is a sensor is attached, and what sensor is attached.
}}
 
{{UGapi|int SensorValue(int SensorIndex) [get]
|Returns the sensed value of a particular Analog Input.  SensorValue varies between 0-1000, corresponding to the 0-5V input range of the Analog Input. If you are using an Analog Sensor from Phidgets Inc., it’s manual will specify the formula used to convert SensorValue into the measured property.
}}
 
{{UGapi|int SensorRawValue (int SensorIndex) [get]
|Returns the full resolution of the Analog Input.  This is a more accurate version of SensorValue.  The valid range is 0-4095. Note however that the analog outputs on the Interface Kit 8/8/8 are only 10-bit values and this value represents an oversampling to 12-bit.
}}
 
{{UGapi|double SensorChangeTrigger (int SensorIndex) [get,set]
|Returns the change trigger for an analog input. This is the amount that an inputs must change between successive SensorChangeEvents. This is based on the 0-1000 range provided by getSensorValue. This value is by default set to 10 for most Interface Kits with analog inputs. SensorChangeTrigger is sometimes referred to as sensitivity.
}}
 
{{UGapi|int DataRate (int SensorIndex) [get,set]
|Gets/sets the data rate for an analog input. This is corresponds to the fastest rate at which SensorChange events will be fired. The data rate is superseded by SensorChangeTrigger, which can be set to   0 if a constant data rate is required. Data Rate is in milliseconds and corresponds to the amount of time between events. Data Rate is bounded by DataRateMax and DataRateMin. The analog inputs cannot all be set to the fastest data rate at the same time - if this is attempted, an exception will be thrown when the data bandwidth has been exceeded. For data rates less then the maximum, data is still sampled at the maximum speed, and averaged between events for the user. Supported data rates are: 1, 2, 4, 8, and every multiple of 8 until DataRateMin. Setting an unsupported data rate (ie. 3, 9, 17) will result in a thrown exception. Note that data rate is limited to 16ms when opening over the Phidget Webservice.
}}
 
{{UGapi|int DataRateMax (int SensorIndex) [get]
|The maximum data rate that can be set for an analog input, in milliseconds.
}}
 
{{UGapi|int DataRateMin (int SensorIndex) [get]
|The minimum data rate that can be set for an analog input, in milliseconds. This is usually 1000.
}}
 
{{UGapi|bool Ratiometric() [get,set]
|Sets/returns the state of Ratiometric. Ratiometric <nowiki>=</nowiki> true configures the Analog Inputs to measure relative to VCC (nominal 5V). Ratiometric <nowiki>=</nowiki> false configures the Analog Inputs to measure relative to an internal precision 5V reference. Ratiometric is not updated from the Phidget.  It is recommended to explicitly set Ratiometric when the Interfacekit is opened. After changing the ratiometric state, wait until the ratiometric property matches what was set before reading analog data.
}}
 
===Events===
{{UGapi|OnInputChange(int InputIndex, bool State) [event]
|An event that is issued when the state of a digital input changes.
}}
 
{{UGapi|OnOutputChange(int OutputIndex, bool State),  [event]
|An event that is issued when the state of a digital output changes.
}}
 
{{UGapi|OnSensorChange(int SensorIndex, int SensorValue),  [event]
|An event that is issued when the returned value from a sensor (Analog Input) varies by more than the SensorChangeTrigger property.
}}


==Product History==
==Product History==

Revision as of 18:34, 29 August 2016


Required Hardware

  • A 1018 Phidget InterfaceKit
  • Sensors, LEDs, and switches to test the InterfaceKit
  • A USB Cable
  • A computer

Connecting the Pieces

  1. Connect any sensors to the voltage inputs on the 1018.
  2. Connect the 1018 InterfaceKit to the computer using a USB cable.
  3. Connect a switch or a piece of wire connecting ground to one of the digital input terminals.
  4. Connect an LED to one of the Digital Outputs by inserting the long LED wire into the digital output 0 and the shorter wire into Ground.


Testing Using Windows

Phidget Control Panel

In order to demonstrate the functionality of the 1018, the Phidget Control Panel running on a Windows machine will be used.


The Phidget Control Panel is available for use on both macOS and Windows machines.

Windows

To open the Phidget Control Panel on Windows, find the Ph.jpg icon in the taskbar. If it is not there, open up the start menu and search for Phidget Control Panel

Windows PhidgetTaskbar.PNG

macOS

To open the Phidget Control Panel on macOS, open Finder and navigate to the Phidget Control Panel in the Applications list. Double click on the Ph.jpg icon to bring up the Phidget Control Panel.


For more information, take a look at the getting started guide for your operating system:


Linux users can follow the getting started with Linux guide and continue reading here for more information about the 1018.

First Look

After plugging the 1018 into your computer and opening the Phidget Control Panel, you will see something like this:

1018 Panel.jpg


The Phidget Control Panel will list all connected Phidgets and associated objects, as well as the following information:

  • Serial number: allows you to differentiate between similar Phidgets.
  • Channel: allows you to differentiate between similar objects on a Phidget.
  • Version number: corresponds to the firmware version your Phidget is running. If your Phidget is listed in red, your firmware is out of date. Update the firmware by double-clicking the entry.


The Phidget Control Panel can also be used to test your device. Double-clicking on an object will open an example.

Voltage Input

Double-click on a Voltage Input object in order to run the example: [[Image:{{{1}}}_VoltageInputSensor_Example.jpg|center|link=]]


General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:

  • Modify the change trigger and/or data interval value by dragging the sliders. For more information on these settings, see the data interval/change trigger page.
  • If you have an analog sensor connected that you bought from us, you can select it from the Sensor Type drop-down menu. The example will then convert the voltage into a more meaningful value based on your sensor, with units included, and display it beside the Sensor Value label. Converting voltage to a Sensor Value is not specific to this example, it is handled by the Phidget libraries, with functions you have access to when you begin developing!


For more information about Voltage Inputs, check out the Voltage Input Primer.

Voltage Ratio Input

Double-click on a Voltage Ratio Input object in order to run the example: [[Image:{{{1}}}_VoltageRatioSensor_Example.jpg|link=|center]]


General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:

  • The voltage ratio is reported in Volts per Volt. For example, if the Phidget is providing 5V and the sensor is sending back 2.5V, the ratio will be 0.5V/V.
  • Modify the change trigger and/or data interval value by dragging the sliders. For more information on these settings, see the data interval/change trigger page.
  • If you have an analog sensor connected that you bought from us, you can select it from the Sensor Type drop-down menu. The example will then convert the voltage into a more meaningful value based on your sensor, with units included, and display it beside the Sensor Value label. Converting voltage to a Sensor Value is not specific to this example, it is handled by the Phidget libraries, with functions you have access to when you begin developing!


For more information about Voltage Ratio Inputs, check out the Voltage Ratio Input Primer.

Template:UgDigitalInputAL

Digital Output

Double-click on a Digital Output object {{{2}}} in order to run the example: [[Image:{{{1}}}_DigitalOutput_Example.jpg|center|link=]]


General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:

  • Toggle the state of the digital output by pressing the button.

Testing Using Mac OS X

  1. Go to the Quick Downloads section on the Mac OS X page.
  2. Download and run the Phidget OS X Installer
  3. Click on System Preferences >> Phidgets (under Other) to activate the Preference Pane
  4. Make sure your device is properly attached
  5. Double click on your device's objects in the listing to open them. The Preference Pane and examples will function very similarly to the ones described above in the Windows section.

Testing Using Linux

For a general step-by-step guide on getting Phidgets running on Linux, see the Linux page.

Using a Remote OS

We recommend testing your Phidget on a desktop OS before moving on to remote OS. Once you've tested your Phidget, you can go to the PhidgetSBC, or iOS pages to learn how to proceed.

Technical Details

If you want to know more about the input/output capabilities of the 1018 InterfaceKit, check the Digital Input Primer, Digital Output Primer, and the Analog Input Primer.

What to do Next

  • Programming Languages - Find your preferred programming language here and learn how to write your own code with Phidgets!
  • Phidget Programming Basics - Once you have set up Phidgets to work with your programming environment, we recommend you read our page on to learn the fundamentals of programming with Phidgets.


Product History

Template:UGhist Template:UGrow2 Template:UGrow2 Template:UGrow2 Template:UGrow2 Template:UGrow2 Template:UGrow2 Template:UGrow2 Template:UGrow2