OS - Phidget SBC
Quick Downloads
Already know what you're doing? Here you go:
Note: updates should normally be done via the System -> Packages page on your PhidgetSBC4 web interface. It is rarely necessary to completely re-flash your device.
Getting Started with the Phidget SBC
Welcome to using the Phidget SBC. If you haven't already, check out the user guide in order to set up the following:
- Networking
- Administrator password
If you are ready to go, the first step will be deciding how you will use the SBC:
- Use the SBC like any other Linux computer, simply connect a monitor and a keyboard and begin your development.
- Use a more powerful external computer to develop your code, and then simply copy the files to the SBC.
Warning: Regardless of how you decide to use the SBC, you will be running on the SBC as root (super-user). This means you are able to overwrite important system files without the system asking for additional permissions.
If you will not be using an external computer, jump ahead to learn about installing packages for development, otherwise, keep reading!
Developing with an external computer
There are two main ways in which you can access your SBC from an external computer:
- SBC Web Interface
- Secure Shell (SSH)
The user guide covers the SBC Web Interface in detail, so we will review SSH below.
SSH
If you are unfamiliar with SSH, it is a simple yet powerful tool that allows you to log into a remote machine in order to execute commands. You can also transfer files using the associated SCP tool.
In order to use SSH, you need to know the following things about the SBC:
- IP address (e.g. 192.168.1.123) or the link local address (e.g. phidgetsbc.local)
- The administrator password
You must also enable SSH on the SBC. You can do this via the SBC Web Interface which is shown in the image below:
SSH on Windows
To use SSH on Windows, we recommend PuTTY. Use the images below as a guide for configuring PuTTY (use the IP address or the link local address interchangeably):
After clicking open, simply login as root and provide the administrator password:
To transfer files between your SBC and Windows machine, we recommend either of these programs:
You will follow a similar process to access the SBC as described for SSH.
SSH on Linux and macOS
SSH is available on Linux and macOS by default. To run SSH, simply open the terminal and type the following:
ssh root@phidgetsbc.local
Or, something like this (you will need to know the IP address of your SBC):
ssh root@168.254.3.0
You will then be prompted for the password in order to gain access to the SBC:
To copy a file from the SBC to your development machine using SCP, simply open the terminal and type the following:
scp root@phidgetsbc.local:/path/to/source /path/to/destination
You can reverse this if you want to transfer a file from your development machine to your SBC:
scp /path/to/source root@phidgetsbc.local:/path/to/destination
Installing packages for development
At this point you have connected to the SBC through one or more these three options:
- SBC Web Interface
- SSH
- Directly via monitor and keyboard
Now that you are connected, you may want to start developing on/for the SBC. Before you do this, you need to install some packages. Let's start with C/C++ and Java.
C/C++ and Java
The simplest way to install C/C++ and Java support on the SBC is via the install buttons on located on the SBC Web Interface (System->Packages). Check Include full Debian Package Repository before installing.
When developing for Java, ensure your development machine and your SBC have the same version of Java. Check your Java version by entering this command:
Java -version
If you need to update the version of Java on your SBC, use the following commands:
apt-get install openjdk-7-jre-headless
su
update-alternatives --config java
You're now ready to begin programming! Continue through this guide for code examples and directions on where to go next.
Installing Python
Installing support for Python has three steps:
- Ensure Include full Debian Package Repository is checked on the SBC Web Interface (System->Packages)
- Install Python
- Install Phidget Python module
You will need to run commands on the SBC to install support for Python. You can either use SSH to issue the commands, or you can connect directly to the SBC via a monitor and keyboard.
Basic Python
The base Python functionality can be downloaded and installed in one step:
apt-get install python
Next, install the Phidget Python module.
Method 1: Use the Internet
First, install wget and unzip:
apt-get install wget
apt-get install unzip
Next, copy the web link address for the Python Libraries and use it in the following command (right click to copy into a terminal):
wget http://copied_link
The Phidget Python libraries should now be downloaded in the folder you ran the previous command in. The next step is to unzip the file:
unzip filename
Finally, change directories to the unzipped folder:
cd /path/to/unzipped/folder
and install the Phidget Python libraries:
python setup.py install
You're now ready to begin programming! Continue through this guide for code examples and directions on where to go next.
Method 2: Use a USB Key
Copy the Python Libraries onto a USB key. Unpack the zip file into a folder on the USB key. Insert the key into the SBC.
You will have to figure out where the USB key (and the Phidget Python library folder) is now located. We describe how in the general Using USB Data Keys section. Next, run the following commands (be sure to modify the usb directory number if necessary):
cd /media/usb0/
python setup.py install
You're now ready to begin programming! Continue through this guide for code examples and directions on where to go next.
Using the Phidget SBC
Writing a Phidget Program
We provide two ways to write and upload a Phidget Program:
- The web interface:
- This is useful for simple projects written in Java that you want to start only at boot
- You can also use C projects, but they must be compiled off the SBC for an ARM processor
- Over SSH, which will allow you to write or transfer source code directly to and from the SBC
- This is useful for all other projects, such as:
- Projects that run at scheduled times (e.g. once per minute)
- Projects that use languages other than Java or ARM-compiled C
- This is useful for all other projects, such as:
Note that you can still run an SSH project at boot, you just have to write and install a startup script. This is a bit complex, but we do have an example that starts the program phidgetnetworkserver21
at boot using a script.
Once you know which method you'd like to use, you can continue on to learn how to Program in Java with the Web Interface, or how to Program with SSH using Java, C, or Python. If you are actually typing in source code on the SBC, you'll find our developing code on the SBC section useful.
Program in Java with the Web Interface
To show how to write, compile, and install Java programs on the SBC, we'll use the Java Hello World example code. You can download the HelloWorld example by downloading the whole Java example package. Make sure you have the same version of Java installed on the SBC as you have on your external development machine. Instruction for checking and updating are found on the installation page.
Here's how to get the HelloWorld code running on the SBC. On your external computer:
1. Download the SBC version of the Phidget Java libraries (phidget21.jar
). You can download this from the web interface, on the page under Projects → Projects
, under the Notes section.
2. Place the SBC version of phidget21.jar
into a directory on your external computer. This will be your working directory that you will use to compile the Java files.
3. Also copy the HelloWorld.java
file into that working directory.
4. Compile the HelloWorld.java
file from within that working directory. From the command line prompt on Windows, this will be:
javac -classpath .;phidget21.jar HelloWorld.java
In a terminal on Linux or Mac OS, this will be:
javac -classpath .:phidget21.jar HelloWorld.java
5. You should now have three compiled class files: HelloWorld.class
, HelloWorld$1.class
, and HelloWorld$2.class
. You don't need to try and run them, and if you do you may encounter an error because the SBC phidget21.jar
may be slightly different than the Phidget support you have installed on your external computer.
Now we move onto the SBC:
6. Create a new project on the SBC, in the web interface under Projects → Projects
. Call it HelloWorld:
7. On the next screen, you will be prompted to upload your files. We will upload the three Java class files, and then click the Start
button:
8. You'll note that as it runs, there are two links below the Stop
button: One called stdout
, which is Standard Output, and one called stderr
, which is Standard Error. Usually, when you run a program on the command line, you see both standard out and standard error at the same time - i.e. you get all program output right there in your terminal or command prompt. But when running a program in the background, Linux splits the output up into normal output and error output as this is very useful for debugging (i.e. you can check if standard error is empty).
Here, however, if you're not sure whether the program will run correctly, you should first check stderr
to see if any errors were generated, and then check stdout
to see if the output looks as expected.
To write your own Java program, follow the same process but use your own source code instead of the HelloWorld.java
example.
Now that you have a running program, we offer additional help on running a program automatically using the web interface.
Program with SSH
Similarly to starting a program via the web interface, we use the Phidget Java HelloWorld
example here.
Make sure you have Java installed on the SBC. To compile and run the HelloWorld
example:
1. Open an SSH terminal to the SBC
2. Download the Phidget Java Examples to the SBC, using wget (you may need to install wget
using apt.)
3. Unpack the examples using unzip (you may need to install unzip
using apt.)
4. The location of phidget21.jar
on the SBC is /usr/share/java/phidget21.jar
. Within the unzipped example directory, compile the HelloWorld.java
example:
javac -classpath .:/usr/share/java/phidget21.jar HelloWorld.java
5. To run the HelloWorld
program, use:
java -classpath .:/usr/share/java/phidget21.jar HelloWorld
Now that you have a running program, you'll probably want to learn to run this Java program automatically.
Permissions Note: If you're used to using Linux with Phidgets already, you'll probably notice that you don't need to switch into root using sudo
on the SBC in order to run programs. This is because you already are running as root, not because the udev rules are set up. So if you set up another user, or run a cron job as anything other than root or system, you'll need to add permission for the Phidget program to run in your udev rules.
Developing Code on the SBC
When you're not just using pre-written source code, and you're writing code actually on the SBC itself, you'll probably want to use nano. Other terminal editors on the SBC include vi
which is already installed, and emacs
, which you can install using apt. Both vi
and emacs
are much more efficient for the experienced user, but they contain modes and keyboard shortcuts that can seem strange or almost hindering to the casual user.
Regardless of which editor you choose to use, some of your keyboard habits may not transfer well. For example, in the Linux command line, the command Ctrl-C
means stop the currently running program, (i.e. your open editor) not copy. Within most SSH terminals, you can copy and paste using the right-mouse button, and on some terminals (and all native Linux terminals) you can copy by simply highlighting text, and you can paste it using the middle (scroll) mouse button. On the other hand, if you write a program that hangs on the command line, Ctrl-C
can actually be useful to terminate it.
Also Ctrl-Z
does not mean undo, rather it means run the current program in the background. This is useful because running a program in an SSH terminal simply hangs your SSH input until the program is done. So typing Ctrl-Z
while the program is running frees up the command line for more input. But if you accidentally hit Ctrl-Z
while running an editor like nano, the editor will immediately exit to the command line. Don't worry though, it will not stop or lose your work. You can bring it back up by using the fg
(e.g. 'foreground') command, like fg nano
, and this will automatically bring your nano process back to the front.
Running a Program Automatically
For testing your program, you will certainly want to run it via SSH or via the Start
button on the project page on the web interface until you are quite sure it runs well. However, eventually you will probably want the program to run without your input, either continuously, and starting at boot, or via a task scheduled to run to completion at certain times.
Both have their advantages and disadvantages. Usually, you would want to use the continuous, from-boot methods for event driven code that has to handle a wide variety of user input that could occur at any time. You would want to use the scheduled method when the SBC needs to perform a repeated task (e.g. reading sensor data) again and again. The main difference is:
- With the continuous (boot) method you can have any Phidgets (including sensors, LEDs, input switches, etc) attached and giving events to your code all the time, and
- With the scheduled (cron) method you have much less of a chance to run into long-term memory management and instability problems with any code you write, because your program runs for only a short time before exiting and getting cleaned up.
Via the Web Interface
To use this method, you must have created the program you want to run as a Java or ARM-compiled C project in the web interface. If you would like to use another language, or another way of uploading your project, but you still want to start at boot and run continuously, you will need to use a boot script.
In the web interface, go to the Projects
tab, and click on the project you would like to run. Near the bottom of the project page (the one with the Start
and Stop
buttons at the top), there will be a section called Startup Settings
. You can see a screenshot of the whole project page, including these settings, in the web interface project section.
Select the Enabled
radio button. The other defaults should be fine, unless you specifically know otherwise:
- For Boot Order, lower numbers boot first. Booting later means more programs are available for use, booting earlier means other programs can use your program.
- Run as a daemon starts the program as a daemon, which is a program that runs in the background. Unless you have explicitly written your program as a daemon, leave this checked. (If you don't know what a daemon is, don't worry, you haven't written one, so leave it checked.) Unchecking this when your program is a normal program will cause the SBC to hang while booting.
- The Executable or Class name should be automatically sensed to be your main Java class
- Arguments are any command line arguments you need, just as you would type them into the command line
Note: Your program must be very, very stable to run properly via the web interface. Imagine your program running continuously for days, or months on end. Any memory leaks, over time, will render your program (and the SBC) unusable until a reboot. Counts or other variables that increase within your program and never reset may create a segmentation fault eventually.
If, for stability purposes, you want your program to start, run for a little while, and then exit so that the SBC operating system can clean up the memory each time, you'll probably want to use Cron to run your program instead.
Via Cron
Cron can automatically schedule programs - known as 'jobs', or 'cron jobs' - at most once per minute. Less often than that, it is very flexible, allowing you to run it on certain months, weekdays, hours, etc. Cron simply reads a special file (your crontab
) and runs whatever programs are listed, with whatever timing they are listed with. The cron program runs all the time in the background, making it what is known as a Linux daemon, but the programs it starts as jobs run only as long as they naturally would, and then they exit.
If you need your program to run more often than once per minute, have the program schedule itself while still running. For example, to run every five seconds, run a fast loop, and sleep for five seconds. Do this twenty times and exit. Then schedule this once per minute using cron, and your program will in essence run every five seconds.
Setting up a cron job simply entails editing your crontab
file.
First, you'll probably want to specify your default editor to be nano. Otherwise it will default to vi
and you'll have to figure out vi
in order to add lines to your crontab:
export EDITOR=nano
Then, to edit your crontab file, simply type:
crontab -e
Each line of the crontab file is one scheduled job. Lines that start with a hash "#" are comments and are ignored. There is an example line in the crontab, and a reminder line at the very end. Essentially, each line should contain:
minute hour dayOfMonth month dayOfWeek command
Where:
command
is the program you want to run (with absolute path, and arguments)- For example,
./myprogram argument1
won't work, but/root/code/myprogram argument1
will
- For example,
- Each time argument is either a number, a list of numbers separated by commas, or an asterisk
- For example, * * * * * means every minute for all days and months, 0,30 * * * * means every thirty minutes (i.e. at the top of the hour and at 30 minutes in) for all days and months
If you already have jobs scheduled, you'll see them in the file that comes up. You can edit, add, or delete.
After you save, you'll see a little message back in the terminal that says the new crontab file was installed, and it is now scheduled! Cron always starts every boot, and so if you have edited and installed your crontab as above, the scheduling of your program will start properly even after a reboot of the SBC. However, if you are having strange scheduling problems, you may want to familiarize yourself with the software details of how the SBC as a whole determines the current date and time.
My Cron Job Doesn't Work!
It is actually very common for a script or program to work on the command line but then not work as a cron job. The most common reason for this, by far, is that you specify relative paths in your program to access files rather than absolute paths. For example:
code/project.c
is a relative path (bad for cron)/root/code/project.c
is an absolute path (good for cron)
The cron jobs are not executed from your home directory, or your code directory, so they will not be using the same location you may be using to test your code. So always use absolute paths.
Another common reason is you may be using environment variables or other settings that are true in a terminal but are not true by default in the raw system. You can end up taking many things for granted in a shell, for example the shortcut "~" means home directory in a shell, but not by default in the raw system. The things that get loaded for a shell (but which are not present in the raw system) are:
- The settings loaded by
/etc/profile
- Any settings in
~/.bashrc
, which is nothing by default on the SBC
On a full Linux operating system, you would use the logs written to by cron to find the error output and debug it. On the SBC, however, cron does not write logs (otherwise, these logs would eat up the SBC memory very quickly even for routine jobs). For short-term debugging, you can write output from your program to a file, and read that file afterwards to figure out what your program is doing.
Via a Boot Script
If you want to run your program constantly and for it to start at boot like the web interface would do, you can install your program into the boot order using a script. This is a somewhat involved process, and you should be familiar with shell programming in Linux. For this process, we only offer a similar example which installs and runs the program phidgetnetworkserver21
within the boot sequence.
Using USB Data Keys
After plugging the USB key in, it won't just appear on your desktop, so to speak, so you'll need to figure out where you can read and write to it within the SSH directory structure.
The web interface program can help with this. After you plug a USB key in, it will show up under Status → System
. Or, the USB key and all other attached devices can be seen at Status → USB
:
In the screenshot above, you can see that the USB key is located in /media/usb0
.
Alternately, you can use the SSH command mount
, and the searching program grep
which will filter the response of mount
and only return the lines with your search term (usb
):
root@phidgetsbc:~# mount | grep usb
/dev/sda1 on /media/usb0 type vfat (rw,noexec,nodev,sync,noatime,nodiratime)
In this case, the USB key can be written to and read from using the /media/usb0
directory. Copying a file to /media/usb0
will copy a file to the USB key. The same goes for removing, renaming, opening files within your program, etc.
Note: Mount points like /media/usb0
should not be hard-coded into any of your programs. (See the Common Problems and Solutions section for more information.) If you need to obtain the mount point for a freshly mounted USB key within your code, have your code obtain the mount tables and search on the device (e.g. /dev/sda1
or /dev/sdb1
) and obtain the corresponding mounted /media/usbN
location, where N is a number 0-9.
Saving and Retrieving Data
This section covers getting data on and off of the SBC. There are two main methods of simply moving data on and off the SBC - via a USB key, and via copy over the network - and a third method for moving and installing data when it concerns backing up lower level system data.
Via a USB Key
After plugging in a USB data key, first you need to find out the location where that data key was mounted.
Let's say the location of the USB key is /media/usb0/
, and we want to copy the file data.txt
to the USB key. Your SSH session might look something like this, using ls and mount:
root@phidgetsbc:~# ls
data.txt
root@phidgetsbc:~# mount
tmpfs on /lib/init/rw type tmpfs (rw,nosuid,mode=0755)
proc on /proc type proc (rw,noexec,nosuid,nodev)
sysfs on /sys type sysfs (rw,noexec,nosuid,nodev)
udev on /dev type tmpfs (rw,mode=0755)
tmpfs on /dev/shm type tmpfs (rw,nosuid,nodev)
devpts on /dev/pts type devpts (rw,noexec,nosuid,gid=5,mode=620)
rootfs on / type rootfs (rw)
procbususb on /proc/bus/usb type usbfs (rw)
/dev/sda1 on /media/usb0 type vfat (rw,noexec,nodev,sync,noatime,nodiratime)
root@phidgetsbc:~# cp data.txt /media/usb0/
The cp program copies data from a source to a destination. The syntax is cp from to
, where here we are copying from data.txt
to /media/usb0/
.
Caution: Even if there is no USB key mounted at /media/usb0/
, this use of cp
will still work with no errors! This is because there is still a file called /media/usb0/
, there is just no USB key file system mounted to that point. So be sure to run mount or use some other method of determining that there is, in fact, a USB data key attached and where it is mounted to.
Over the Network (SCP)
SCP is a command line program already installed on Linux and Mac OS, and downloadable for free on Windows. We discuss it and give examples in the SSH section, but remember it here when you're trying to get data on and off of the SBC. With SSH or a terminal already open, you'll probably find it to be much faster and easier than dealing with a USB key.
Backing Up Your Data
For the web interface, you can save and restore all web interface settings under the System → Backup & Restore
tab.
To save the settings of what packages are installed for later re-installation, you can type:
dpkg --get-selections > installedPrograms.txt
Then save the file installedPrograms.txt
externally. If you have to completely wipe the SBC, you can just reinstall the whole list by moving the installedPrograms.txt
file back onto the SBC, and then typing:
dpkg –set-selections < installedPrograms.txt
apt-get dselect-upgrade
Also remember to externally save:
- Your
~/.bashrc
settings file if you've changed it - Your
crontab
file if you've edited it - Any data files or code you've created
It is important to save these settings often, and at points where you know the system is running well. It may be tempting to create a backup right before you wipe the SBC and start from scratch, but often the reason you are having problems then is some setting or change, and backing these up and reinstalling them will only reinstall the problem.
To truly back the files up, you must copy them to an external computer or location using either a USB Key or over the network. Then they can be copied back if needed later.
If you are looking to restore data on an SBC that will not boot properly, you'll want to be in the partial recovery portion of our Troubleshooting section.
Programming Languages
Now that you have the basic libraries installed, you can pick your language and begin programming!
If you are not using the Network server to control a Phidget over a network, your next step will be to delve into the use of your specific language. Each page has its own set of specific libraries, code examples, and setup instructions.
On SBC Linux, we recommend the following languages:
These languages may also run on the SBC, but we do not yet directly offer SBC support for them:
- C# (using Mono)
You can probably figure out how to install and use them by a combination of the language pages linked above, and the section on installing other languages on the SBC.
Network Server
The SBC comes with the Phidget Network Server installed, and the SBC automatically starts the Network Server at boot.
To practice using the Network Server, and to learn more about it, we have hands-on examples on the general Linux page, starting in the using the Network Server section.
Advanced Information
Shutting off USB ports to save power
The SBC3 has an on-board USB hub that can control power to the ports. To do this unbind and rebind the USB drivers.
To turn off the ports echo "1-1" >/sys/bus/usb/drivers/usb/unbind
To turn on the ports echo "1-1" >/sys/bus/usb/drivers/usb/bind
These will also cause detach and attach events for the Phidget devices, respectively. While the drivers are unbound, you will not get any hot plug events for any devices on USB.
Using a Touchscreen
Please note that this will ONLY work with an SBC3 since it has a USB 2.0 hub:
Using a touchscreen with the SBC is a great way to get user input and visual feedback from an SBC otherwise devoid of visual output. The SBC does not have any conventional display ports such as VGA, DVI, or HDMI but it does have a number of USB ports and USB displays do exist. With the upgrade to a USB 2.0 hub on the SBC3 from the earlier models which had USB 1 hubs the SBC now has enough capability to operate a screen over USB. We don't recommend running a standard desktop environment since the processor is too slow to really keep up with a typical desktop it does make for an excellent interface for a kiosk, instrumentation control panel or other, similar use case. This document is going to go through the process of enabling support for a typical USB display as well as installing a fairly compact desktop environment called xfce on the SBC.
The screen I will be using is from a company called Lilliput. Specifically a UM-70 model. Before you begin, please make sure that you have the screen plugged into the SBC, it will also be useful to have a spare USB keyboard and mouse handy as you will need them once you are no longer using an SSH terminal to communicate with the SBC.
Getting the display to function
Begin by logging into the web configuration page for your SBC and upgrading all of the packages on the SBC. Be sure to include the full Debian package repository. For more information on how to do this refer to the getting started section of the Phidget SBC documentation. Once you are fully up to date open an SSH session with the SBC and navigate to the "/etc" folder. Open inittab with a terminal-based text editor such as nano and add the following to the bottom of the file, just above the T0:23:respawn:/sbin/getty -L ttyAMA0 115200 vt100
line:
1:2345:respawn:/sbin/getty 38400 tty1
2:23:respawn:/sbin/getty 38400 tty2
3:23:respawn:/sbin/getty 38400 tty3
4:23:respawn:/sbin/getty 38400 tty4
5:23:respawn:/sbin/getty 38400 tty5
6:23:respawn:/sbin/getty 38400 tty6
Now reboot your system. After a few minutes you should see the LCD screen come up with a standard Linux terminal interface and a login prompt. This is all well and good but this isn't really appreciably better than simply using an SSH session to communicate with the SBC.
Setting up Xfce
In order to get a traditional windowing environment we still need to install a desktop manager as well as a number of supporting packages. Log in and make sure everything is still up to date with:
apt-get update
Then install the following packages:
apt-get install xserver-xorg lxde xfce4
If the SBC asks you if you want to continue, just type "Y" and press enter.
This will install the xfce desktop environment and any other necessary programs on the SBC. When it's done, restart the SBC. When it boots back up it should boot directly to a login screen instead of the terminal interface. Log in, and you are good to go. It won't be particularly fast, but don't worry, the SBC does not have a dedicated video processor on it so it's perfectly normal for it to be slow. What's important is that it works.
Calibrating the touch screen
Unfortunately, by default the screen is calibrated to believe the bottom of the screen is on the right hand side. This has the effect of making the touch functionality more or less useless until it has been properly calibrated. To do this, install the following package:
apt-get install xinput-calibrator
Now use xinput calibrator to measure the parameters of your screen. Launch xinput calibrator (called Calibrate Touchscreen in the programs menu) and follow the instructions on the screen. The screen should now be functioning at full potential.
Using a Different Wireless Adapter
The support for the wireless adaptor that Phidgets sells is written into the SBC kernel. Hence, we do not support using other adaptors.
However, Linux is very flexible, and it is possible (though not easy) to write a custom kernel for the SBC and add support for a new wireless adaptor. We can't help you with this, but we do provide some basic guidelines for building your own kernel. You can also have a look at our thoughts on our own experience with choosing a Wifi adapter: Alternative Wi-Fi Adapters on the SBC.
Using a Different Webcam
In addition to the webcam that Phidgets sells, you have the option to use many different webcams with the SBC. There is a long list of compatible webcams.
The common thread for these webcams is that they use UVC - the USB Video Class - drivers for Linux. You can then use mount to find out what video device your webcam is mounted under.
Taking Pictures With the Webcam
Probably the most straightforward way to use a webcam for pictures rather than video is to use the opencv
library. You can get it by:
apt-get install libcv2.1
If there is no libcv2.1
package, you can perform apt-cache search libcv
to find the current version.
The opencv libraries can also be used within Python, by installing the link between them:
apt-get install python-opencv
Then taking pictures from within code becomes quite simple. For example, in Python, taking and saving an image is four lines:
#! /usr/bin/python
import cv
# The webcam is located at /dev/video0
# OpenCV only needs the number after video
webcam = cv.CaptureFromCAM(0)
frame = cv.QueryFrame(webcam)
cv.SaveImage("image.jpg", frame)
For the complete OpenCV documentation, see The OpenCV Reference, and specifically the section on Reading and Writing Images.
Note: The SBC is probably not as powerful for image processing and transport when compared to your desktop computer. Try running your image processing code on the SBC from an early point in development. During those test runs, you can visit the first System page of the SBC Web Interface to check the processor and memory use. For more information on processor power, check the specification for your SBC (on the product page on our main website) as well as our discussion of pushing processor limits below.
Checking System Logs
The SBC maintains two logs: a kernel log and a system log.
The kernel log is for low-level occurrences, such as devices attaching and leaving the USB hub, recording what drivers are being used, and so on.
The system log (syslog) is for normal chatter from the operating system. Any program with the right permissions can use it (though you need to know the method to write to it, information all around the Internet can help) and it contains everything from the Ethernet going up and down, to webserver requests, and so on. If you don't run many programs or services on the SBC, the syslog will essentially be a mirror of the kernel log, because the kernel is the only thing talking.
You can check these logs by using the web interface in the System → Logs
tab.
Or you can perform more powerful filtering and displaying via an SSH terminal. For example, dmesg
is the command to display the kernel log, and tail
prints the last ten lines of input. So, if you are trying to see if you can get a device to be detected on USB, you can run dmesg | tail
to print the latest ten lines of kernel log data.
The actual locations of the log files (for filtering and reading) are:
/var/log/syslog
/var/log/dmesg
But don't edit them directly! Always follow the advice and procedures around the Internet on how to properly log items to syslog.
X Forwarding
Although most tasks can be done using the SBC Web Interface or SSH, you can also set up X11 forwarding on the SBC. X11 is the window manager base, which provides a graphical windowing system on the SBC. Although you probably won't connect directly to the X11 manager (i.e. by plugging a screen directly into the SBC), X11 also gives a user the ability to forward graphical windows over SSH. You will need the following packages installed:
x11-common
xbase-clients
After installing, make sure that the line in /etc/ssh/sshd_config
has a line that says:
X11Forwarding yes
Then log out and log back into the SBC. This second time you log in, use the -X
switch to turn on X forwarding for that connection:
ssh -X root@phidgetsbc.local
Then you should be able to run programs that launch a window, and it will launch remotely and appear on the computer you have the SSH connection from.
Pushing Processor Limits
The SBC, though more powerful than many embedded computers out there, is probably about as powerful as your smartphone. If you hook up 1 ms Phidget sampling devices to all six of its USB ports, events and packets will probably get lost. The exact data rates you can accomplish depend on:
- What else is running on the SBC
- How efficient your code is for external operations (like File I/O)
- Other minor details (e.g. the temperature of the SBC, etc)
If you want to achieve data rates as fast as possible, try these tips:
- Program in C, not in an interpreted language (Python, Java, .NET)
- Perform file I/O as little as possible. Locally cache data, manage your writing to a file in a separate thread, and use low-level write calls.
- Change the filesystem to a faster, non-compressed file system.
- Alternatively, use a high-data-rate USB key.
- Keep other running processes to a minimum.
- If you are running code locally right on the SBC, turn off the Phidget Network Server.
Custom Kernel and Filesystem
You can compile your own kernel and flash it to the board. It is left up to the user to configure an appropriate cross-compiler for kernel development. You may also be able to compile a new kernel on-board. We have a kernel development kit, complete with patch file and README:
Compiling a new, custom kernel is somewhat complex. If the SBC is your first experience with Linux, writing a custom kernel will be difficult. However, it will probably also be very rewarding because you can put whatever you like into it. We might be able to offer additional suggestions, but ultimately you're on your own here.
You may be able to write a custom kernel right on the SBC, but the easiest way is to develop the kernel on an external computer. And the easiest way to develop on an external computer is for that computer to also be Linux, even just in a Virtual Machine. The time spent loading a copy of Linux into a virtual machine (such as VirtualBox, which is free) onto your computer will probably be less time than setting up a standard compiler on Windows to cross-compile.
On your external Linux system, you will need:
- A cross-compiling toolchain for the ARM processor, which we briefly describe on the main Linux page, and
- The SBC Kernel Development Package from the Phidgets website.
The kernel development kit has a brief README file which describes how to obtain the proper kernel and patch, configure, customize, and build it.
We have an application guide in progress, which walks through building a custom kernel to add Bluetooth support to the SBC. Please contact us if you would like more information. Even if you are trying to add support for hardware other than a bluetooth modem, or wondering if support even exists in the kernel for your modem (3G, alternate wireless, etc) you will probably find the application guide helpful. Follow it up to the point where you run the program menuconfig
(you don't need an SBC to do this), which will give you a menu of all drivers you can enable in the SBC kernel.
After making your new kernel, you should have a uImage and modules target for your Makefile. At this point you can transfer your kernel files onto the SBC, make their targets, and transfer them into the nand memory. This involves erasing the old kernel, flashing the new kernel, installing the new kernel modules, and rebooting. From the SBC, in the kernel directory:
make uImage; make modules
flash-eraseall /dev/mtd3
nandwrite -p /dev/mtd3 arch/arm/boot/uImage
make modules-install
reboot
Custom kernels can also be flashed from the Recovery System.
If you need to create a root filesystem image, the filesystem type is UBIFS, and the commands to create it are:
For SBC2:
mkfs.ubifs -m 2KiB -e 126KiB -c 4050 -r $ROOTFS/ system_ubifs.img
ubinize -o system_ubi.img -m 2KiB -p 128KiB -s 512 ubinize.cfg
Where ubinize.cfg
contains:
# Section header
[rootfs]
# Volume mode (other option is static)
mode=ubi
# Source image
image=system_ubifs.img
# Volume ID in UBI image
vol_id=0
# Volume size
vol_size=64128KiB
# Allow for dynamic resize
vol_type=dynamic
# Volume name
vol_name=rootfs
# Autoresize volume at first mount
vol_flags=autoresize
For SBC3:
mkfs.ubifs -F -m 4KiB -e 248KiB -c 4000 -r $ROOTFS/ system_ubifs.img
ubinize -o system_ubi.img -m 4KiB -p 256KiB ubinize.cfg
Where ubinize.cfg
contains:
# Section header
[rootfs]
# Volume mode (other option is static)
mode=ubi
# Source image
image=system_ubifs.img
# Volume ID in UBI image
vol_id=0
# Volume size
vol_size=83MiB
# Allow for dynamic resize
vol_type=dynamic
# Volume name
vol_name=rootfs
# Autoresize volume at first mount
vol_flags=autoresize
You then flash ‘system_ubi.img’ (not ‘system_ubifs.img’) from the recovery system.
Again, like the custom kernel creation, the need to create a custom root filesystem is essentially non-existent except for those advanced users who already know they need it... and furthermore, you are almost entirely on your own.
Saving a file system to flash to multiple SBC's
You may want to create a complete backup of your SBC root filesystem, which can then be flashed to other SBCs. This is how it could be done:
You will need a USB drive - we have had issues using cheap flash drives, so a real USB drive is recommended. Make sure it's empty, as it will be reformatted.
All of these commands are executed on your SBC, while logged in over SSH.
First, re-format the USB drive as ext3. Assuming the USB drive is sda and has a single partition:
umount /dev/sda1
mkfs.ext3 /dev/sda1
mount -t ext3 /dev/sda1 /media/usb0
Then, remount / as readonly, so it doesn't change as we're copying it. To do this, we need to kill all running processes except sshd:
service udev stop
service ifplugd stop
service rsyslog stop
service avahi-daemon stop
service phidgetNetworkserver stop
service ntp stop
service busybox-httpd stop
service dbus stop
service cron stop
pkill dhclient
mount -o remount,ro /
If the remount says that / is busy, do a 'ps auxww' and 'pkill' anything else that may be running until it remounts properly.
Then, copy / to the flash drive:
mkdir /media/usb0/root
mount --bind / /mnt/
cp -a /mnt/* /media/usb0/root/
Then, clean up the copy - removing files specific to this board. We also remove the APT cache to save space.
find /media/usb0/root/var/log -type f -print0 | xargs -0 rm -f
rm -rf /media/usb0/root/var/lib/apt/lists/*
mkdir /media/usb0/root/var/lib/apt/lists/partial
rm -f /media/usb0/root/var/cache/apt/*.bin
rm /media/usb0/root/etc/udev/rules.d/70-persistent-net.rules
rm /media/usb0/root/etc/ssh/ssh_host_*
then, create the ubinize.cfg file:
For SBC3:
cd /media/usb0
cat > ubinize.cfg << EOF
[rootfs]
mode=ubi
image=/media/usb0/system_ubifs.img
vol_id=0
vol_size=83MiB
vol_type=dynamic
vol_name=rootfs0
vol_flags=autoresize
EOF
For SBC2:
cd /media/usb0
cat > ubinize.cfg << EOF
[rootfs]
mode=ubi
image=/media/usb0/system_ubifs.img
vol_id=0
vol_size=64128KiB
vol_type=dynamic
vol_name=rootfs
vol_flags=autoresize
EOF
NOTE: you may need to increase vol_size if your filesystem is larger.
then, create the UBI image from the copy:
For SBC3:
mkfs.ubifs -F -m 4KiB -e 248KiB -c 4000 -r /media/usb0/root /media/usb0/system_ubifs.img
ubinize -o /media/usb0/system_ubi.img -m 4KiB -p 256KiB ubinize.cfg
For SBC2:
mkfs.ubifs -m 2KiB -e 126KiB -c 4050 -r /media/usb0/root /media/usb0/system_ubifs.img
ubinize -o /media/usb0/system_ubi.img -m 2KiB -p 128KiB -s 512 ubinize.cfg
then, unmount the drive to ensure everything is written out properly:
umount /dev/sda1
Then, you can remove the /root/ folder and system_ubifs.img. system_ubi.img can be flashed to other SBCs using the recovery system.
Software Details
For even more advanced uses of the SBC, it may help to know the gritty details of the SBC software system.
- Operating System
- Debian/GNU Linux
- Kernel 2.6.X or higher (generally kept up to date with latest releases, use
uname -r
to check the kernel version)
- Main Filesystem (rootfs)
- UBIFS (a raw flash type of file system)
- Mounted in a 460 MB Nand partition (in Read/Write mode)
- Kernel
- uImage format
- Has its own 3MiB partition on bare Nand
- Web Interface Scripts and Configuration Data
- Located in
/etc/webif
- Modifying these scripts can be done; however, it is very easy to enter invalid data that could cause the system to behave unexpectedly or not boot.
- User Applications uploaded through Web Interface
- Located in
/usr/userapps
- Webcam Device Location
/dev/video0
- Numbers increase with more webcams
- Date and Time
- Set using ntp (network time protocol) at boot
- The ntp daemon continues to run in the background and will periodically update the clock
- The network keeps the SBC very close to real time
- Also there is a real-time clock with battery backup which will preserve date/time across reboots, power removal
- The real-time clock is synced to system time during reboot/shutdown
- If power is unplugged suddenly, and the network not restored, the real-time clock may not have the correct time
- Wireless Networking System
- Wireless adapter support for the wireless adapter that Phidgets sells is written into the kernel
- It supports WEP and WPA
- It is best configured through the configuration interface.
- Nand Layout
- The board contains 512MiB on Nand. This nand is split into 7 partitions as follows:
- 0: u-boot size: 256K Read Only
- 1: u-boot_env size: 128K Read Only
- 2: recovery_kernel size: 2M Read Only
- 3: kernel size: 3M Writable
- 4: flashfs size: ~3.625M Read Only
- 5: recovery_fs size: ~ 43M Read Only
- 6: rootfs size: ~ 460M Writable
- The final size of flashfs/recovery_fs/rootfs depends on the image size at production, and on the number/location of bad blocks in the NAND.
- Note: U-Boot and recovery kernel and filesystem cannot be written from Linux - this is a safety measure.
- Boot Loader
- U-Boot is used for setting up the processor and booting Linux, and is only accessible via a serial connection.
- Normal users will not need to use or modify it.
- Be very careful when modifying the u-boot partition. If it is damaged or overwritten, it is difficult to fix.
- When using U-Boot, a prompt will appear via serial shortly after power on.
- The environment variables will help you determine how to boot Linux on the SBC
- You can also refer to the U-Boot documentation
- Boot Process
- From power on...
- 1. Processor loads first 4 bytes from NAND into Steppingstone and runs it.
- 2. Steppingstone sets up RAM, copies u-boot from NAND into RAM and runs U-Boot.
- 3. U-Boot initializes the processor, sets GPIO state, etc., copies the linux kernel into RAM, sets up the kernel command line arguments, checks that the kernel image is valid, and boots it.
- 4. Linux boots, bringing up USB, Networking, NAND, etc. and then mounts the rootfs NAND partition on /.
- 5. init gets run as the parents of all processes, as uses the /etc/inittab script to bring up the system. This includes mounting other filesystems, settings the hostname, and running the scripts in /etc/init.d, among other things.
- 6. inittab then turns the green LED on.
- 7. inittab then sets up a getty on the first serial port, ready for interfacing using the debug board.
Appendix
Useful Commands
You will likely be interacting with the SBC's operating system over the command line, either via a keyboard and monitor, or, using SSH. This section discusses some useful commands and how to run them.
Note: You can use the man
command at any time when using the Phidget SBC to access the system manual:
man ls
To save you some time, we have compiled a list of common commands you may be interested in:
ls
The ls program lists the contents of a directory.
It will show both files and folders, but not files that start with a "." (these are hidden files on Linux).
- If you also want to show hidden files, use
ls -a
- If you want more information, such as size and date modified, use
ls -l
- Commands can be combined, like
ls -al
cd
The cd program changes to a new directory.
For example, cd /root
changes into the directory at the base of the file tree called root.
Note:
- Linux uses forward slashes
- The base of all directories is "/" (not "C:\")
- The tilde symbol (~) is short for your home directory (i.e. when you are root, this is short for "/root")
- The double dot ".." means move one directory higher (for example from
/root/data/
to/root/
)
pwd
The pwd program prints the current directory you are working in. ('P'rint 'W'orking 'D'irectory)
For example:
root@phidgetsbc:~# pwd
/root
cp, mv, and rm
These programs are copy (cp), move (mv), and remove (rm).
Copy copies a file from one location and pastes it to another.
For example, if you have a file data.txt
, typing cp data.txt data_backup.txt
will put a copy of the file data.txt
into data_backup.txt
Move moves a file (this is also useful for renaming files) to a new destination.
For example, if you have a file data.txt
, typing mv data.txt data_backup.txt
will put the contents of data.txt
into data_backup.txt
, and then will remove data.txt
.
Remove deletes a file.
For example, typing rm data.txt
will delete data.txt
.
Note that rm is final. Once you remove a file using rm
, it is gone forever. There is no recycle bin, no temporary trash, nothing other than backups you may have personally created in the past!
Directories can only be removed with rmdir
, and then only if they are empty. If you want to remove a directory and all the files in it, use rm -rf directory
but be very, very careful with this command. Trying to remove everything within a directory (e.g. rm -rf *
) is one of the most dangerous commands you can run on a Linux system, as running it from the wrong directory will result in Linux happily removing everything under that directory -- which could be your entire filesystem.
find
The find program does what it says - it finds things.
Unfortunately for the casual user, the find program is very flexible and powerful, and thus not especially intuitive to use. But, here are some examples:
SSH Command | What it Does | Example |
---|---|---|
find folder -name file.txt
|
Looks for all files in a folder (/ for root - or all - folders) with a certain name (* for wildcard) | find / -name *.jpg
|
find folder -mtime +X
|
Looks for all files in a folder modified less than X days ago | find /root -mtime +30
|
grep
The grep program takes text input and searches for a term.
For example, if you type mount
to view what devices are mounted (e.g. loaded) on your SBC, you will see:
root@phidgetsbc:~# mount
tmpfs on /lib/init/rw type tmpfs (rw,nosuid,mode=0755)
proc on /proc type proc (rw,noexec,nosuid,nodev)
sysfs on /sys type sysfs (rw,noexec,nosuid,nodev)
udev on /dev type tmpfs (rw,mode=0755)
tmpfs on /dev/shm type tmpfs (rw,nosuid,nodev)
devpts on /dev/pts type devpts (rw,noexec,nosuid,gid=5,mode=620)
rootfs on / type rootfs (rw)
procbususb on /proc/bus/usb type usbfs (rw)
/dev/sda1 on /media/usb0 type vfat (rw,noexec,nodev,sync,noatime,nodiratime)
This may be a lot of information you don't need. If you are only interested in a USB key attachment (as described in the Using USB Data Keys section), you can use grep to filter that one response:
root@phidgetsbc:~# mount | grep sda1
/dev/sda1 on /media/usb0 type vfat (rw,noexec,nodev,sync,noatime,nodiratime)
nano
The nano program is a small text editor that you can use within an SSH terminal.
Nano can be surprisingly useful for writing short lengths of code right on the SBC, so there is no need to transfer files and keep track of different file versions on different computers.
Nano has all keyboard commands which are listed at the bottom of the screen at all times as a reminder (Ctrl-O to save, Ctrl-X to exit, these expand with a larger terminal window). And, nano provides what is called 'syntax highlighting', which colours reserved keywords, comments, strings, and so on as appropriate to the programming language you are using. Nano detects the programming language via the extension of the file (.java
for Java, .c
for C/C++, and .py
for Python).
Typing nano test.py
on an SSH command line and then entering a few lines of Python into the new empty file results in:
apt
The apt program allows you to install, uninstall, upgrade, and search software available for the SBC. For a non-Linux user, the apt framework may be daunting at first, but it actually allows you to keep your system up to date and install and manage software quickly, easily, and for free.
Note: Before installing anything on the SBC, make sure that the Include full Debian Package Repository option is checked in the web interface under System → Packages
.
SSH Command | What it Does | Example |
---|---|---|
apt-cache search term
|
Looks for all programs (packages) that have term in the title or description
|
apt-cache search opencv
|
apt-cache show package
|
Shows a lot of data about package including size, version, etc
|
apt-cache show unzip
|
apt-get update
|
Gets the most recent listing of available software | apt-get update (No options)
|
apt-get install program
|
Installs program from the internet
|
apt-get install python
|
mount
The program mount
shows you all of the mounted devices on your SBC.
For example:
root@phidgetsbc:~# mount
tmpfs on /lib/init/rw type tmpfs (rw,nosuid,mode=0755)
proc on /proc type proc (rw,noexec,nosuid,nodev)
sysfs on /sys type sysfs (rw,noexec,nosuid,nodev)
udev on /dev type tmpfs (rw,mode=0755)
tmpfs on /dev/shm type tmpfs (rw,nosuid,nodev)
devpts on /dev/pts type devpts (rw,noexec,nosuid,gid=5,mode=620)
rootfs on / type rootfs (rw)
procbususb on /proc/bus/usb type usbfs (rw)
/dev/sda1 on /media/usb0 type vfat (rw,noexec,nodev,sync,noatime,nodiratime)
For the non-Linux user, the concept of a device may be quite strange. To give a short summary, everything on Linux that you can read or write is a file. Webcams are files (i.e. you can 'read' photos from them), USB keys are files, and each filesystem (tmp storage, the kernel portion, the main filesystem) are also themselves files. These files specify what and how something can be written. These are not necessarily linear, for example, you can see above that the USB key (/media/usb0
is mounted within the root file system rootfs
which is /.
So mount gives you an idea of what devices have been 'mounted' for reading or writing, and how you can read and write to them. More information on mount (and its various forms, like umount
) is available widely around the Internet.
which
The program which
tells you if and where a program is installed.
For example, on a default SBC, typing which python
will return no results. But after successfully installing python, it will return /usr/bin/python
as the location of the python program/binary/executable.
Some Useful Commands to Install
These are other programs you may find useful on the command line. Although they are not on the SBC by default, these and other programs can usually be installed simply by using apt-get install, with the exception of gcc. For example, apt-get install wget
will download and install wget.
Note: This section and the section on pre-installed commands can hardly cover all of the complexities and power of the Linux operating system. There are many excellent tutorials online, and between them and using apt to find and install programs you should be able to learn a lot and perform any number of complex useful tasks.
gcc
The gcc program is the C compiler for Linux.
If you are an experienced C/C++ user on Mac or Linux, or if you've already read our C Language page, you might think you need to install gcc via apt-get
to compile C code. However, gcc is not in the package repository for the SBC, so apt-get install gcc
will fail. Rather, to install gcc, you can do it via the web interface, as described in the Installing C/C++ and Java section.
After installing it via the SBC web interface, you can use gcc
normally.
less
The less program displays the contents of a text or source code file. When displaying the file, less
allows you to scroll up and down to read it.
This is useful if you are writing your sensor readings to a data file, and you want to read the data file while it is being written by your main code. If your data file is called data.txt
, you can type less data.txt
and see the lines in the file, and what they are.
The less
program output can also be piped into another program. For example, you can use less
and the word search program grep
to find lines within a file with a search term. For instance, if you have a C source code file Program.c
on the SBC, and you want to see all the lines in Program.c
that contain a variable name var
, you can type:
less Program.c | grep var
wget
The wget program allows you to get an online file (over http) and download it to the SBC.
For example, to get the source file (HTML) from the Phidgets home page, you can type:
wget http://www.phidgets.com
This is most useful for downloading libraries, drivers, or anything (zip, tar, etc) you need from the web which is not available by using apt.