1135 User Guide

From Phidgets Support


Required Hardware

  • A 1135 Voltage Sensor
  • An InterfaceKit or Hub to read the sensor
  • A sensor cable
  • A USB cable
  • A computer
  • A voltage source

Connecting the Pieces

1135 0 Connecting The Hardware.jpg
  1. Connect the voltage sensor to the InterfaceKit or Hub with the sensor cable.
  2. Connect a voltage source to the terminal block. If you connect the supply backwards, the reported voltage will be negative.
  3. Connect the InterfaceKit or Hub to your computer with the USB cable.


Testing Using Windows

Phidget Control Panel

In order to demonstrate the functionality of the 1018, the Phidget Control Panel running on a Windows machine will be used.


The Phidget Control Panel is available for use on both macOS and Windows machines.

Windows

To open the Phidget Control Panel on Windows, find the Ph.jpg icon in the taskbar. If it is not there, open up the start menu and search for Phidget Control Panel

Windows PhidgetTaskbar.PNG

macOS

To open the Phidget Control Panel on macOS, open Finder and navigate to the Phidget Control Panel in the Applications list. Double click on the Ph.jpg icon to bring up the Phidget Control Panel.


For more information, take a look at the getting started guide for your operating system:


Linux users can follow the getting started with Linux guide and continue reading here for more information about the 1018.

First Look

After plugging the 1018 into your computer and opening the Phidget Control Panel, you will see something like this:

1018 Panel.jpg


The Phidget Control Panel will list all connected Phidgets and associated objects, as well as the following information:

  • Serial number: allows you to differentiate between similar Phidgets.
  • Channel: allows you to differentiate between similar objects on a Phidget.
  • Version number: corresponds to the firmware version your Phidget is running. If your Phidget is listed in red, your firmware is out of date. Update the firmware by double-clicking the entry.


The Phidget Control Panel can also be used to test your device. Double-clicking on an object will open an example.

Voltage Input

Double-click on a Voltage Input object in order to run the example: [[Image:{{{1}}}_VoltageInputSensor_Example.jpg|center|link=]]


General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:

  • Modify the change trigger and/or data interval value by dragging the sliders. For more information on these settings, see the data interval/change trigger page.
  • If you have an analog sensor connected that you bought from us, you can select it from the Sensor Type drop-down menu. The example will then convert the voltage into a more meaningful value based on your sensor, with units included, and display it beside the Sensor Value label. Converting voltage to a Sensor Value is not specific to this example, it is handled by the Phidget libraries, with functions you have access to when you begin developing!


For more information about Voltage Inputs, check out the Voltage Input Primer.

Testing Using Mac OS X

  1. Go to the Quick Downloads section on the Mac OS X page.
  2. Download and run the Phidget OS X Installer
  3. Click on System Preferences >> Phidgets (under Other) to activate the Preference Pane
  4. Make sure your device is properly attached
  5. Double click on your device's objects in the listing to open them. The Preference Pane and examples will function very similarly to the ones described above in the Windows section.

Testing Using Linux

For a general step-by-step guide on getting Phidgets running on Linux, see the Linux page.

Using a Remote OS

We recommend testing your Phidget on a desktop OS before moving on to remote OS. Once you've tested your Phidget, you can go to the PhidgetSBC, or iOS pages to learn how to proceed.

Technical Details

General

The Voltage Sensor measures the differential voltage between the input terminals and outputs the difference proportionally. The maximum differential voltage that can be measured accurately is +/-30V. When the positive and negative inputs are equal, the analog output value is 2.5V. When the positive input is 30V greater than the negative input, the analog output is 4.5V and when the positive input is 30V less than the negative input, the analog output is 0.5V.

When measuring voltage levels below 5V, you'll have more accuracy if you connect the leads directly to the analog input of an interface kit.

Since the 1135 Voltage Sensor can measure a differential voltage, the common mode rejection (CMR) is an important specification. CMR refers to the amount of voltage that both input terminals of a differential amplifier can be offset without affecting the output gain. For example, if the positive terminal sees a voltage of 7V and the negative terminal sees a voltage of 5V, then the CMR would be 5V and would output a value of 2V at unity gain. For the 1135 Voltage Sensor, it is able to measure the differential voltage of +/-10V with a CMR of 40V while keeping the accuracy within 2%. Please note that the error specifications do not include the error introduced by the Analog to Digital Conversion on the Analog Input. (if you are using the 1135 with a PhidgetInterfaceKit) The majority of error introduced by the Analog to Digital conversion is from the error in the voltage reference (0.5% max), and the limitation of resolution in the SensorValue property. The best accuracy can be achieved by using a 2 or more point calibration of your system - effectively calibrating the 1135 and the PhidgetInterfaceKit in a single step. If you are calibrating, be sure to use a good quality multimeter to determine the voltage being applied.

Using RawSensorValue in the formula will increase the resolution, which is limited by SensorValue to about 67mV.

Formulas

The Formula to translate SensorValue into differential voltage is:



where Vdiff is defined as Vpositive - Vnegative.

Template:UGotherint

Analog Input Cable Connectors

Each Analog Input uses a 3-pin, 0.100 inch pitch locking connector. Pictured here is a plug with the connections labeled. The connectors are commonly available - refer to the Analog Input Primer for manufacturer part numbers.

What to do Next

  • Programming Languages - Find your preferred programming language here and learn how to write your own code with Phidgets!
  • Phidget Programming Basics - Once you have set up Phidgets to work with your programming environment, we recommend you read our page on to learn the fundamentals of programming with Phidgets.