Template:Language - Visual Basic .Net Write Code
By following the instructions for your operating system and compiler above, you now have working examples and a project that is configured. This teaching section will help you understand how the examples were written so you can start writing your own code.
Remember: your main reference for writing VB.NET code will be the Phidget22 API Manual and the example code.
Step One: Create and Address
You will need to declare your Phidget object in your code. For example, we can declare a digital input object like this:
ch = New Phidget22.DigitalInput()
Next, we can address which Phidget we want to connect to by setting parameters such as DeviceSerialNumber.
ch.DeviceSerialNumber = 496911
Although we are not including it on this page, you should include error handling for all Phidget functions. Here is an example of the previous code with error handling:
Try
ch = New Phidget22.DigitalInput()
ch.DeviceSerialNumber = 496911
Catch ex As PhidgetException
errorBox.addMessage("Error initializing: " + ex.Message)
End Try
Step Two: Open and Wait for Attachment
After we have specified which Phidget to connect to, we can open the Phidget object like this:
ch.Open(5000)
To use a Phidget, it must be plugged in (attached). We can handle this by calling Open(timeout), which will block indefinitely until a connection is made, or until the timeout value is exceeded. Simply calling Open does not guarantee you can use the Phidget immediately.
Alternately, you could verify the device is attached by using event driven programming and tracking the attach events.
To use events to handle attachments, we have to modify our code slightly:
Private Sub device_Attach(ByVal sender As Object, ByVal e As Phidget22.Events.AttachEventArgs) Handles ch.Attach
Console.WriteLine("Phidget Attached!");
End Sub
We recommend using this attach handler to set any initialization parameters for the channel such as DataInterval and ChangeTrigger from within the AttachHandler, so the parameters are set as soon as the device becomes available.
Step Three: Do Things with the Phidget
We recommend the use of event driven programming when working with Phidgets. In a similar way to handling an attach event as described above, we can also add an event handler for a state change event:
Private Sub device_DigitalInputChange(ByVal sender As Object, ByVal e As Phidget22.Events.DigitalInputStateChangeEventArgs) Handles ch.StateChange
stateText.Text = "State: " + e.State;
End Sub
If you are using multiple Phidgets in your program, check out our page on Using Multiple Phidgets for information on how to properly address them and use them in events.
If events do not suit your needs, you can also poll the device directly for data using code like this:
state= device.State;
stateText.Text = "State: " + e.State;
Important Note: There will be a period of time between the attachment of a Phidget sensor and the availability of the first data from the device. Any attempts to get this data before it is ready will result in an exception. See more information on this on our page for Unknown Values.
Enumerations
Some Phidget devices have functions that deal with specific predefined values called enumerations. Enumerations commonly provide readable names to a set of numbered options.
Enumerations with Phidgets in Visual Basic will take the form of Phidget22.EnumerationType.Enumeration_Name.
For example, specifying a SensorType to use the 1142 for a voltage input would look like:
Phidget22.VoltageSensorType.PN_1142
and specifying a K-Type thermocouple for a temperature sensor would be:
Phidget22.ThermocoupleType.K
The Phidget error code for timing out could be specified as:
Phidget22.ErrorCode.Timeout
Step Four: Close and Delete
At the end of your program, be sure to close and delete your device:
device.Close();