Notice: This page contains information for the legacy Phidget21 Library. Phidget21 is out of support. Bugfixes may be considered on a case by case basis. Phidget21 does not support VINT Phidgets, or new USB Phidgets released after 2020. We maintain a selection of legacy devices for sale that are supported in Phidget21. We recommend that new projects be developed against the Phidget22 Library.
|
Encoder Primer: Difference between revisions
No edit summary |
|||
Line 29: | Line 29: | ||
*[[1052 - PhidgetEncoder]] | *[[1052 - PhidgetEncoder]] | ||
*[[3530 - Optical Rotary Encoder ISC3004]] | *[[3530 - Optical Rotary Encoder ISC3004]] | ||
==Add to this page== | |||
{{ContentNeeded|Make sure to mention that 4-pin encoders still work with either controller, as long as everything is connected up properly.}} |
Revision as of 16:15, 20 January 2012
Introduction
Encoders are the best device for tracking the position of an object. They come in 2 main types, rotary and linear. Rotary encoders track angular position while linear track position in one spatial dimension.
How they work
Encoders work by counting ticks that are spaced evenly and very close together. On higher quality encoders the ticks are closer together resulting in greater measurement accuracy.
Types of encoders
Rotary
Mechanical encoders consist of a metal disc with slots cut into it which spins beneath a series of wire brushes. When the brushes are over the slot the circuit remains open, but when the brushes contact the disc they close the circuit. These are brushes at different radii and the encoder is guaranteed to have a unique pattern of closed circuits for each set step in angular position.
Because of the physical complexity mechanical encoders have to be larger than the alternatives to get the same accuracy.
Optical encoders have a similar disc to mechanical encoders except it has a number of opaque or transparent areas. Then a light source in conjunction with a set of photo detectors perform the same function as the wire brushes in a mechanical encoder. For each angular position step there is guaranteed to be a unique set of active photo detectors.
Linear
Optical linear encoders dominate the high performance market for linear encoders. Typical incremental scale periods can get down to sub-micrometre and with interpolations accuracy can be as fine as nanometre.
Magnetic linear encoders use Hall Effect readheads to measure ticks, they typically have measurement resolutions in the order of micrometres.
Capacitive linear encoders work by sensing the capacitance between reader and scale. Commonly used in digital calipers. The downside is they are vulnerable to foreign materials such as dust or dirt. Resolution is in the order of micrometres.
Quadrature encoding
Quadrature encoders are common, using two output channels to dictate both a change and the direction of change. In a quadrature system, two parallel mechanical switches or optical slots are offset slightly. This way, as the slots pass by the sensor, the staggered output indicates both the number of pulses that have occurred (the change in position) as well as which output channel is leading the other (direction of change).
Choosing an encoder
The first thing to consider when choosing an encoder is what degree of accuracy you are going to require. Is the application a simple human interface (knob or something similar) or are you trying to precisely track the movement of a motor? Mechanical, magnetic, and capacitive encoders have the advantage of being extremely cheap. So even though they don't have as high accuracy as optical encoders, for applications that don't require it such as turning a knob on a control panel they are ideal. For any situation where you need modest to high accuracy, you only real choice is an optical encoder.
Products that fall under this category
- 1047 - PhidgetEncoder HighSpeed 4-Input
- 1057 - PhidgetEncoder HighSpeed
- 1052 - PhidgetEncoder
- 3530 - Optical Rotary Encoder ISC3004
Add to this page
Make sure to mention that 4-pin encoders still work with either controller, as long as everything is connected up properly. |